COMPARAISON DES MÉTHODES ECSOTE ET GOULDEN D'EXTRACTION DES BPC, DES HAP, DES DIOXINES ET DES FURANES CHLORÉS DANS L'EAU DE SURFACE ET DES EFFLUENTS DE STATIONS D'ÉPURATION MUNICIPALES

Septembre 2006

Dépôt légal – Bibliothèque nationale du Québec, 2006

ISBN-13 : 978-2-550-47773-0 (PDF) ISBN-10 : 2-550-47773-1 (PDF)

ÉQUIPE DE TRAVAIL

Auteurs : Denis Laliberté¹ et Nathalie Mercier¹

Révision scientifique : Sylvie Cloutier¹

François Messier²

Analyses chimiques: Centre d'expertise en analyse environnementale du Québec²

Échantillonnage : Jean-Philippe Baillargeon¹

Christine Fillion¹ René Therreault¹

Graphisme et cartographie : Francine Matte-Savard¹

Mona Frenette¹

Mise en page : Lyne Martineau¹

Direction du suivi de l'état de l'environnement, ministère du Développement durable, de l'Environnement et des Parcs, édifice Marie-Guyart, 675, boulevard René-Lévesque Est, 7^e étage, Québec (Québec) G1R 5V7.

Centre d'expertise en analyse environnementale du Québec, ministère du Développement durable, de l'Environnement et des Parcs, 850, boulevard Vanier, Laval (Québec) H7C 2M7.

COMPARAISON DES MÉTHODES ECSOTE ET GOULDEN D'EXTRACTION DES BPC, DES HAP, DES DIOXINES ET DES FURANES CHLORÉS DANS L'EAU DE SURFACE ET DES EFFLUENTS DE STATIONS D'ÉPURATION MUNICIPALES

Référence: LALIBERTÉ, D. et N. MERCIER, 2006. Comparaison des méthodes ECSOTE et Goulden d'extraction des BPC, des HAP, des dioxines et des furanes chlorés dans l'eau de surface et des effluents de stations d'épuration municipales, Québec, ministère du Développement durable, de l'Environnement et des Parcs, Direction du suivi de l'état de l'environnement, ISBN-13: 978-2-550-47773-0 (PDF), ISBN-10: 2-550-47773-1 (PDF), 22 p. et 8 annexes.

Mots clés : BPC, contaminants, dioxines, eau, échantillonnage intégré, échantillonneur, furanes, grand volume, HAP, substances toxiques, ultra-traces, Yamaska.

RÉSUMÉ

epuis quelques années, le ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) travaille à concevoir un appareil permettant l'échantillonnage et la concentration in situ des substances organiques toxiques présentes dans l'eau de surface (ECSOTE), selon un échantillonnage intégré sur de longues périodes. Cet appareil, appelé ECSOTE, est une nouvelle version d'un prototype initialement conçu en collaboration avec le département de chimie de l'Université Laval. La technique est basée sur le principe de l'extraction liquide-liquide en continu au moyen d'un solvant, le dichlorométhane. Le processus, automatisé, est contrôlé par un ordinateur. L'échantillonnage de l'eau est réalisé in situ aux stations de traitement d'eau à partir du tuyau d'amenée de l'eau brute.

L'ECSOTE a été comparé avec l'extracteur Goulden employé par le Ministère : une méthode d'extraction qui utilise de grands volumes d'eau prélevés ponctuellement. Les essais ont été réalisés avec des eaux usées provenant de cinq stations d'épuration municipales et avec l'eau de surface de la rivière Yamaska.

Les résultats ont montré que dans le cas des échantillons d'eau de surface, l'ECSOTE donne des valeurs comparables à celles obtenues avec l'extracteur Goulden relativement aux biphényles polychlorés (BPC), aux hydrocarbures aromatiques polycycliques (HAP), aux dioxines et aux furanes chlorés. Dans le cas des échantillons d'eaux usées, les résultats relatifs aux BPC sont comparables, alors que les résultats relatifs aux HAP, aux dioxines et aux furanes chlorés sont du même ordre, mais présentent plus de variabilité. L'ECSOTE s'est révélé très efficace pour l'extraction et la concentration des BPC, des HAP, des dioxines et des furanes chlorés dans l'eau de surface et dans les effluents municipaux.

Les résultats obtenus avec l'ECSOTE permettent d'assurer le suivi de l'évolution temporelle des concentrations de plusieurs groupes de substances organiques chlorées et de calculer les charges moyennes transportées par les rivières. Comparativement à l'échantillonnage ponctuel, l'ECSOTE permet d'accroître la représentativité des mesures par le prélèvement d'échantillons intégrés, tout en réduisant le nombre d'échantillons à analyser. Par rapport à la méthode utilisant l'extracteur Goulden, la méthode utilisant l'ECSOTE, qui réalise l'extraction *in situ*, permet de réduire de moitié les temps d'analyse en laboratoire.

TABLE DES MATIÈRES

Équipe de travail	
Résumé	
Table des matières	
Liste des tableaux	
Liste des figures	
Liste des annexes	V
INTRODUCTION	••••
MÉTHODOLOGIE	
Stations et période d'échantillonnage	
Description des méthodes Goulden et ECSOTE	
Méthode Goulden	
Méthode ECSOTE	
Sommaire	
Prélèvement des échantillons	
Extraction	
Étanchéité du système	
Distillation du dichlorométhane	
Méthodes analytiques	
Méthode d'analyse	
Contrôle de qualité	
Méthode Goulden	
Préparation des blancs Goulden	
Méthode ECSOTE	
Extraction en milieu acide	
Préparation des blancs ECSOTE	
Récupération des étalons de recouvrement	
Résultats des blancs et des échantillons	
Contamination des échantillons	
Traitement statistique	1
RÉSULTATS	1
Comparaisons ECSOTE versus Goulden	1
Biphényles polychlorés (BPC)	
Hydrocarbures aromatiques polycycliques (HAP)	
Dioxines et furanes chlorés	
CONCLUSION	20
DÉFÉDENCES DIDI IOCDADINOLES	2
RÉFÉRENCES BIBLIOGRAPHIQUES	2

LISTE DES TABLEAUX

Tableau 1a	Comparaison des BPC totaux (pg/l) présents dans les eaux usées de stations d'épuration municipales selon les méthodes Goulden et ECSOTE	12
Tableau 1b	Comparaison des BPC totaux (pg/l) présents dans l'eau de surface de la rivière Yamaska à Saint-Hyacinthe selon les méthodes Goulden et ECSOTE .	12
Tableau 2a	Comparaison des HAP du groupe 1 et des HAP totaux (ng/l) présents dans les eaux usées de stations d'épuration municipales selon les méthodes Goulden et ECSOTE	14
Tableau 2b	Comparaison des HAP du groupe 1 et des HAP totaux (ng/l) présents dans l'eau de surface de la rivière Yamaska à Saint-Hyacinthe selon les méthodes Goulden et ECSOTE	14
Tableau 3	Facteurs d'équivalence des dioxines et des furanes chlorés	16
Tableau 4a	Comparaison des dioxines et des furanes chlorés (pg/l) présents dans les eaux usées de stations d'épuration municipales selon les méthodes Goulden et ECSOTE	16
Tableau 4b	Comparaison des dioxines et des furanes chlorés (pg/l) présents dans l'eau de surface de la rivière Yamaska à Saint-Hyacinthe selon les méthodes Goulden et ECSOTE	17
	LISTE DES FIGURES	
Figure 1	Schéma de l'échantillonneur concentrateur des substances organiques toxiques dans l'eau (ECSOTE)	4
	LISTE DES ANNEXES	
Annexe 1	Limites de détection (pg/l) des substances analysées de mai 1999 à janvier 2001	
Annexe 2a	Concentrations des BPC (pg total) dans les blancs ECSOTE relatifs a échantillons d'eaux usées prélevés aux stations d'épuration municipales	ıux
Annexe 2b	Concentrations des BPC selon les méthodes Goulden et ECSOTE dans échantillons d'eaux usées prélevés aux stations d'épuration municipales	les

- Annexe 3a Concentrations des BPC (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001
- Annexe 3b Concentrations des BPC selon les méthodes Goulden et ECSOTE dans les échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001
- Annexe 4a Concentrations des HAP (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eaux usées prélevés aux stations d'épuration municipales
- Annexe 4b Concentrations des HAP selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales
- Annexe 5a Concentrations des HAP (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001
- Annexe 5b Concentrations des HAP selon les méthodes Goulden et ECSOTE dans les échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001
- Annexe 6a Concentrations des dioxines et des furanes chlorés (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eaux usées prélevés aux stations d'épuration municipales
- Annexe 6b Concentrations des dioxines et des furanes chlorés selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales
- Annexe 7a Concentrations des dioxines et des furanes chlorés (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001
- Annexe 7b Concentrations des dioxines et des furanes chlorés selon les méthodes Goulden et ECSOTE dans les échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001
- Annexe 8 Résultats d'analyses des BPC, des HAP, des dioxines et des furanes chlorés dans des échantillons d'eau de surface prélevés en duplicata dans des rivières du Québec

INTRODUCTION

Dans l'eau de surface, les substances toxiques organiques sont habituellement présentes en très faibles concentrations, soit à l'état de traces et d'ultra-traces. Il devient donc difficile, voire impossible de les doser, étant donné les limites de détection et les risques de contamination de l'échantillon. Pour faire le suivi de la contamination des cours d'eau, il faut pouvoir déterminer la concentration de ces substances et obtenir des données de qualité, d'où la nécessité d'augmenter la sensibilité des méthodes d'analyse. L'échantillonnage à grand volume, l'extraction et la concentration des échantillons (Goulden et Anthony, 1985) de même que des principes d'échantillonnage en milieu propre permettent de travailler à l'abri des contaminations ambiantes (Cossa *et al.*, 1996). Ces techniques ont permis d'abaisser les limites de détection et de mettre en évidence la présence de substances rarement quantifiées auparavant dans l'eau de surface, notamment les biphényles polychlorés (BPC), les hydrocarbures aromatiques polycycliques (HAP), les dioxines et les furanes chlorés.

L'extracteur à grand volume Goulden permet de détecter des contaminants organiques à l'état de traces et d'ultra-traces. Cet extracteur a été utilisé dans le cadre de plusieurs études sur les contaminants organiques (Cossa *et al.*, 1998; Lapierre, 1999; ministère de l'Environnement du Québec et Environnement Canada, 2001; Bleau, 2002; Muyldermans, 2002). Toutefois, l'échantillon prélevé constitue une mesure instantanée de la concentration des contaminants. Comme les concentrations des contaminants varient dans le temps, l'échantillonnage ponctuel trace un portrait à court terme de la situation. Si l'on veut suivre l'évolution temporelle, il est donc nécessaire de prélever plusieurs échantillons sur de longues périodes, ce qui implique des analyses supplémentaires. Pour remédier à ces inconvénients, certains appareils ont été conçus de façon à permettre l'échantillonnage intégré sur de longues périodes. Le CLEOR (concentrateur liquide extracteur organique), mis au point en France, en est un (Morlot *et al.*, 1996). Toutefois cet appareil n'est pas autonome et nécessite la présence d'un technicien en permanence.

En 1996, le ministère de l'Environnement du Québec, en collaboration avec le département de chimie de l'Université Laval, a travaillé à la mise au point d'un prototype d'échantillonneur concentrateur pour les substances organiques toxiques. Lors des essais, ce prototype a montré des lacunes de fonctionnement importantes associées à la présence des matières en suspension dans l'eau. Pour remédier à ces problèmes, une nouvelle version a été conçue par le Ministère et elle a été mise à l'essai en 1999. Cet appareil, nommé ECSOTE (échantillonneur concentrateur des substances organiques toxiques dans l'eau), permet de prélever des échantillons d'eau de surface, d'extraire et de concentrer les substances organiques toxiques, telles que les BPC, les HAP, les dioxines et les furanes chlorés, présentes dans ces échantillons, et ce, de manière automatisée. Les prélèvements sont effectués à une fréquence et pour une période prédéterminées. La technique est basée sur le principe de l'extraction liquide-liquide en continu, soit l'extraction des composés organiques présents dans l'eau au moyen d'un solvant, le dichlorométhane. L'ajout de dichlorométhane à l'échantillon, immédiatement après le prélèvement, permet la conservation des composés à analyser et aussi l'échantillonnage intégré sur de longues périodes.

L'appareil avait été conçu de façon à permettre de mesurer des substances toxiques organiques présentes à l'état de traces dans l'eau, de suivre l'évolution temporelle de leur concentration dans

l'eau des rivières et, éventuellement, de calculer les bilans massiques de ces contaminants. Il devait également permettre de réduire le nombre d'échantillons à analyser, tout en augmentant la représentativité des échantillons prélevés, ainsi que de réduire le temps des analyses en laboratoire.

L'objectif de la présente étude était :

 de comparer l'efficacité de l'ECSOTE pour l'extraction des BPC, des HAP, des dioxines et des furanes chlorés dans l'eau de surface et dans les eaux usées avec celle de l'extracteur à grand volume Goulden, utilisé par le ministère du Développement durable, de l'Environnement et des Parcs pour l'extraction d'échantillons d'eau prélevés de manière ponctuelle.

MÉTHODOLOGIE

Stations et période d'échantillonnage

De mai 1999 à janvier 2001, cinq échantillons de 17,85 litres d'eau de surface (en duplicata) ont été prélevés dans l'eau brute à l'usine de traitement d'eau de la Ville de Saint-Hyacinthe. De mai à juillet 1999, cinq échantillons d'eaux usées (en duplicata) ont été recueillis à cinq stations d'épuration municipales, soit Martinville, Cookshire, Farnham, La Prairie et la Communauté urbaine de Québec (CUQ). L'échantillonnage des stations d'épuration municipales a été réalisé dans le cadre du projet Évaluation du potentiel toxique des effluents des stations d'épuration municipales du Québec (ministère de l'Environnement du Québec et Environnement Canada, 2001). Aux stations d'épuration de Martinville et de Cookshire, les échantillons ont été recueillis de façon instantanée, alors qu'aux stations d'épuration de Farnham, de La Prairie et de la CUQ, des échantillons composés sur une période de 24 heures ont été prélevés à l'aide d'échantillonneurs automatiques portatifs. Les échantillons ont été prélevés dans un récipient en acier inoxydable de 20 litres, préalablement conditionné aux solvants organiques (Cossa et al., 1996). Ils ont été extraits en laboratoire à l'aide de l'extracteur à grand volume Goulden et de l'ECSOTE, afin de comparer les deux méthodes.

Description des méthodes Goulden et ECSOTE

Méthode Goulden

Avant de procéder à l'extraction des échantillons d'eau de surface et d'eaux usées, les échantillons sont filtrés sur un filtre de verre de porosité 0,7 µm. Les matières en suspension recueillies par le filtre (phase particulaire) sont extraites au toluène à l'aide d'un extracteur Soxhlet pendant au moins 16 heures. Les filtrats (phase dissoute) sont extraits au dichlorométhane à l'aide d'un extracteur à grand volume Goulden. Le débit de la pompe d'alimentation en eau à l'extracteur est de 475 ml/min et celui de la pompe d'alimentation en solvant est de 10 ml/min; la durée d'extraction d'un échantillon de 17,85 litres est d'environ 38 minutes. Les échantillons sont extraits tels quels sans ajout de solution acide.

Méthode ECSOTE

Les données présentées dans le présent rapport couvrent la période du 13 mai 1999 au 22 janvier 2001. Lors de ces essais, le protocole était légèrement différent de celui utilisé depuis avril 2001 et décrit en détail ci-dessous. Ainsi, le volume d'eau total extrait lors des essais était de 17,85 litres, au lieu de 44 litres par période de 7 jours; les étalons de recouvrement étaient dilués dans 80 ml de méthanol et une petite quantité était alors ajoutée à l'échantillon d'eau au début de chaque cycle avant de débuter l'extraction. Depuis décembre 2000, les étalons de recouvrement avec une petite quantité de méthanol sont ajoutés en une seule opération, avant de débuter l'échantillonnage, dans le ballon de 2 litres contenant 1,7 litre de dichlorométhane, les essais ayant montré que les pertes provenaient principalement des étapes analytiques. Une autre différence concerne la solution acide, laquelle était constituée de HCl (0,75 N) contenant 200 g/l de NaCl dans de l'eau nanopure. Au début de chaque cycle, un volume de 15 ml de cette solution était ajouté à l'échantillon d'eau, avant de commencer l'extraction. Elle a été remplacée par une

solution d'acide sulfurique (1,5 N) dans de l'eau nanopure et le volume, ajouté au début de chaque cycle, a été réduit à 8 ml. Cette solution était moins susceptible d'être contaminée par les produits dosés.

Sommaire

La figure 1 illustre l'ECSOTE et ses différentes parties. Des échantillons d'eau brute d'un volume de 400 ml sont prélevés toutes les 90 minutes durant une période de 7 jours consécutifs, pour un nombre total de 110 échantillons et un volume total de 44 litres. Les composés organiques présents dans l'eau sont extraits à un pH < 2 avec du dichlorométhane (CH₂Cl₂) fraîchement distillé et sont graduellement concentrés dans un ballon de 2 litres (7) contenant 1,7 litre de CH₂Cl₂. Des étalons de recouvrement (marqués au carbone 13) des différents groupes de congénères sont ajoutés dans le ballon de 2 litres avant de débuter l'échantillonnage. Ces étalons servent à calculer les pertes lors de l'échantillonnage et au cours des manipulations en laboratoire. Le prélèvement de l'échantillon ainsi que l'extraction et la concentration des composés organiques présents dans l'eau sont réalisés en milieu fermé, afin d'éviter la contamination de l'échantillon et la perte de vapeur de CH₂Cl₂ à l'atmosphère. Toutes les étapes sont contrôlées par un ordinateur (1) et sont complètement automatisées.

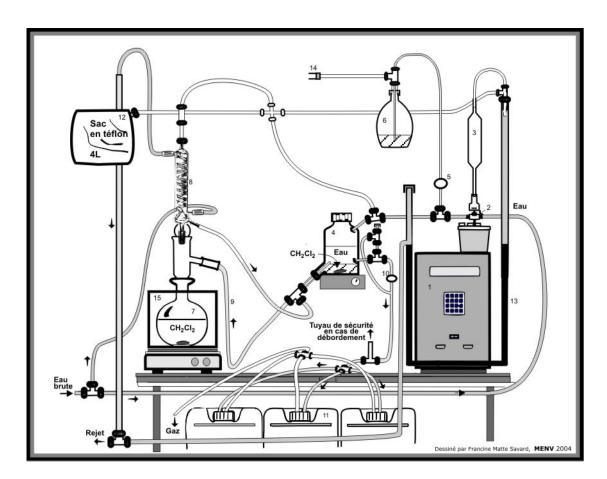


Figure 1 Schéma de l'échantillonneur concentrateur des substances organiques toxiques dans l'eau (ECSOTE)

Prélèvement des échantillons

Le prélèvement des échantillons débute par l'ouverture d'une valve à trois voies (2) qui permet à l'eau de circuler dans une burette en verre de 100 ml (3). Après un délai de 30 secondes, la valve retourne en position fermée durant 18 secondes et l'eau contenue dans la burette se déverse alors dans une bouteille en verre de 1 litre (4) contenant 200 ml de dichlorométhane, le solvant d'extraction. Les mêmes opérations se répètent deux autres fois, mais avec des temps d'ouverture et de fermeture de la valve de 20 et 18 secondes respectivement, afin de permettre l'ajout de 200 ml d'eau supplémentaire. Après le troisième ajout d'eau, une valve magnétique (5) s'ouvre durant 2 secondes pour permettre d'ajouter 8 ml d'une solution d'acide sulfurique 1,5 N contenue dans un réservoir en verre de 4 litres (6). Ce volume d'acide permet d'abaisser le pH de l'eau à une valeur inférieure à 2. Un dernier ajout de 100 ml d'eau est effectué, durant 20 secondes, par l'ouverture de la valve à trois voies, qui est par la suite fermée pour le reste du cycle. Le volume total de l'échantillon est alors de 400 ml. Cinq secondes après la fermeture de la valve à trois voies, un agitateur magnétique démarre pour une période de 65 minutes afin d'assurer le mélange du CH₂Cl₂ à l'échantillon d'eau et d'assurer l'extraction des composés organiques.

Extraction

Tout au long du cycle, d'une durée de 90 minutes, du CH₂Cl₂ est distillé à partir du ballon de 2 litres (7), condensé dans un réfrigérant (8) et déversé dans la bouteille contenant l'échantillon (4). Le surplus de CH₂Cl₂ ajouté dans la bouteille retourne dans le ballon de 2 litres en entraînant les composés organiques qui étaient présents dans l'eau. En milieu acide (pH < 2), les acides humiques précipitent (De Paolis *et al.*, 1997) et sont entraînés avec l'émulsion formée lors de l'agitation dans le ballon de 2 litres. La période d'agitation est suivie d'une période de repos de 18 minutes, qui permet aux deux phases de se séparer (l'eau en haut et le dichlorométhane en bas) et de distiller suffisamment de CH₂Cl₂ pour atteindre un niveau d'équilibre dans la bouteille de 1 litre. Après ce délai, une valve magnétique (10) s'ouvre durant 2 minutes et l'eau est rejetée dans des contenants en polypropylène (11). La durée totale du cycle est de 90 minutes, après quoi, un nouveau cycle recommence avec le prélèvement et l'extraction d'un deuxième échantillon de 400 ml, pour un total de 110 échantillons de 400 ml (44 litres) prélevés tous les 7 jours.

Une partie du CH₂Cl₂ se solubilise dans l'eau (1,5 % p/v) et cette portion est perdue lorsque l'eau est évacuée. À la fin des 7 jours d'échantillonnage, il reste environ de 800 à 900 ml de CH₂Cl₂ dans le ballon de 2 litres qui contient tous les composés organiques extraits durant la période. Cet extrait est conservé au froid et expédié au laboratoire pour analyse. Habituellement, les extraits de deux semaines consécutives sont combinés afin d'obtenir une concentration moyenne sur deux semaines.

Étanchéité du système

Pour maintenir le système fermé à l'atmosphère, les gaz déplacés par l'entrée de l'échantillon d'eau dans la burette de 100 ml sont dirigés vers un sac en téflon (12) qui se gonfle lors de l'entrée des gaz. Un tube en forme de U (13) et contenant de l'eau assure l'étanchéité du système

en empêchant les gaz de s'échapper. Il permet toutefois au surplus d'eau de la burette de 100 ml de se déverser vers le drain, lors de l'ouverture de la valve à trois voies. Ce tube assure aussi l'évacuation sécuritaire des gaz en excès s'il se produisait une surpression dans le système. La partie supérieure du réfrigérant est également reliée au sac en téflon et aux autres tubulures afin d'assurer l'étanchéité de l'ensemble. L'air qui entre dans le contenant d'acide sulfurique est filtré par un tube avec adsorbant C18 (gel de silice) (14) lors de l'ajout d'acide. À la fin du cycle, une partie des gaz contenus dans le sac en téflon est aspirée par la dépression causée lors de la vidange de l'eau présente dans la bouteille de 1 litre. Ce transfert de gaz permet la vidange de l'échantillon.

Distillation du dichlorométhane

La distillation du CH₂Cl₂ s'effectue en continu et est assurée à partir d'un ballon de 2 litres à fond plat (7), contenant 1,7 litre de CH₂Cl₂ et placé sur une plaque chauffante avec une agitation magnétique. Une barre magnétique (recouverte de téflon) dans le ballon de 2 litres agite constamment le CH₂Cl₂. Un cercle en verre de 3 mm d'épaisseur sépare le ballon de la plaque chauffante pour éviter la surchauffe. Un cylindre en acier galvanisé (15) à double paroi (isolé avec de la laine de verre), comportant une ouverture de 38 mm de diamètre sur le dessus, est déposé sur le cercle en verre et recouvre le ballon afin d'assurer le maintien uniforme de la température. La température à l'intérieur de l'enceinte est de 50 °C. Les vapeurs de CH₂Cl₂ sont condensées dans un réfrigérant de type Graham (8) au bas duquel un réservoir a été ajouté pour recueillir le CH₂Cl₂ liquide et le diriger par un tuyau en téflon vers la bouteille de 1 litre. Le réfrigérant est refroidi avec l'eau brute circulant dans la conduite d'échantillonnage, ce qui maintient un écoulement constant de l'eau et empêche la sédimentation des particules.

Le surplus de CH₂Cl₂ dans la bouteille de 1 litre retourne dans le ballon de 2 litres par un tube en téflon en forme de U (9). La densité plus élevée du CH₂Cl₂ par rapport à l'eau et la hauteur de la colonne de CH₂Cl₂ présente dans le tube en U empêche l'eau de passer de la bouteille de 1 litre au ballon de 2 litres contenant le CH₂Cl₂.

Méthodes analytiques

Les extraits obtenus avec l'extracteur Goulden et l'ECSOTE sont analysés selon la même méthode. Les temps d'analyses sont de 31 heures dans le cas de l'extracteur Goulden et de 15 heures dans le cas de l'ECSOTE. Cet écart est attribuable au fait que l'extraction et la concentration des composés organiques par l'ECSOTE sont automatisées et sont réalisées sur le site d'échantillonnage, alors que dans le cas de l'extracteur Goulden, elles ont lieu au laboratoire sous la supervision du personnel de laboratoire.

Méthode d'analyse

Les extraits obtenus dans le dichlorométhane, soit par l'extracteur Goulden soit par l'ECSOTE, sont filtrés puis évaporés et un transfert de solvant pour l'hexane est effectué. Ensuite, l'hexane est évaporé jusqu'à l'obtention d'un volume de 2 ml, dont 1 ml est utilisé pour l'analyse des dioxines, des furanes et des BPC, tandis que le reste sera utilisé ultérieurement pour l'analyse des HAP.

L'analyse des dioxines et des furanes chlorés est effectuée selon le protocole analytique MA. 400–D.F. 1.0 du Centre d'expertise en analyse environnementale du Québec (CEAEQ, 2002) et celle des BPC, selon le protocole analytique MA. 400–BPCHR 1.0 (CEAEQ, 2001). La première partie de l'extrait (1 ml) est d'abord purifiée sur une colonne de silice multicouches élué avec 65 ml de CH₂Cl₂/hexane (2 % CH₂Cl₂). Cette étape est suivie d'une purification sur une colonne d'alumine à trois fractions. L'extrait est élué avec 8 ml de CH₂Cl₂/hexane (1 % CH₂Cl₂) (fraction F1), puis avec 3 ml de CH₂Cl₂ 1 % et 20 ml de CH₂Cl₂ 5 % (fraction F2) et finalement avec 25 ml de CH₂Cl₂ 50 % (fraction F3). La fraction F1 contient la majorité des congénères de BPC, la fraction F2 contient les congénères de BPC planaires et la fraction F3 contient l'ensemble des congénères de dioxines et de furanes.

La fraction F3 est concentrée et transférée dans un microtube de verre, puis évaporée à sec. Un volume connu d'étalon volumétrique est alors ajouté pour le dosage des dioxines et des furanes, par chromatographie en phase gazeuse à haute résolution couplée à un spectromètre de masse fonctionnant à haute résolution. Les limites de détection des différents congénères de dioxines et de furanes varient de 0,01 à 0,8 pg/l, selon le congénère et l'échantillon (annexe 1).

La fraction F2 contenant les congénères de BPC planaires est concentrée et transférée dans un microtube de verre, puis évaporée à sec et un volume connu d'étalon volumétrique est ajouté avant l'analyse. Les limites de détection des différents congénères de BPC planaires varient de 0,01 à 2 pg/l, selon le congénère et l'échantillon (annexe 1).

Une fois analysés, les congénères de BPC planaires sont combinés à la fraction F1. Cette nouvelle fraction est concentrée et un volume connu d'étalon volumétrique est ajouté pour le dosage des congénères de BPC, selon la méthode MA. 400 – BPCHR 1.0. Les limites de détection des différents congénères de BPC varient selon le congénère et l'échantillon. Elles varient de 0,06 à 40 pg/l, dans le cas des échantillons d'eaux usées, et de 0,01 à 20 pg/l, dans le cas des échantillons d'eaux de surface (annexe 1).

La fraction conservée initialement (1 ml) pour l'analyse des HAP est purifiée selon la procédure qui suit (document de référence DR-09-01-CTL-14 : Procédure pour la purification des HAP). Une colonne de silice/alumine 2 : 1 est préparée comme suit : 5 g du mélange silice/alumine 2 : 1 imprégné de 15 à 20 ml d'hexane et 1 cm de sulfate de sodium (Na₂SO₄). La colonne est éluée jusqu'à ce que l'hexane soit au niveau du Na₂SO₄. L'extrait est ajouté et élué avec 10 ml d'hexane (F1), puis 25 ml de CH₂Cl₂/hexane 1 : 1 (F2) et finalement 50 ml de CH₂Cl₂ (F3). Les fractions F2 et F3 sont recueillies, concentrées et un volume connu d'étalon volumétrique est ajouté pour le dosage des HAP. Les limites de détection varient selon le composé et l'échantillon. Elles varient de 10 à 60 000 pg/l, dans le cas des échantillons d'eaux usées, et de 1 à 4 000 pg/l, dans le cas des échantillons d'eaux usées, et de

Contrôle de qualité

Méthode Goulden

Préparation des blancs Goulden

Les blancs de laboratoire sont préparés en ajoutant 250 ml de dichlorométhane dans l'extracteur Goulden. Après une période d'agitation de 30 minutes, le dichlorométhane est recueilli. La fraction contenant le dichlorométhane subit ensuite le même traitement que l'extrait de dichlorométhane provenant de l'échantillon. Un blanc est aussi préparé en procédant à l'extraction d'un filtre avec du toluène à l'aide d'un Soxhlet, pendant au moins 16 heures. Cet extrait subit le même traitement que l'échantillon. La quantité en pg total de chaque substance détectée dans les blancs est soustraite de la quantité mesurée dans l'échantillon, en tenant compte du volume d'eau de l'échantillon.

Méthode ECSOTE

Extraction en milieu acide

Préalablement aux essais de comparaison des méthodes Goulden et ECSOTE, des essais ont été réalisés en milieu acide et en milieu neutre avec l'ECSOTE, afin de vérifier l'efficacité d'extraction. À cette fin, la couleur de l'eau brute a été utilisée comme indicateur. Des mesures de la couleur ont été effectuées de 30 secondes à 75 minutes après le début de l'extraction. Les résultats ont révélé que l'extraction en milieu acide permet de réduire la couleur d'environ 40 %, alors qu'en milieu neutre, il n'y a pas de réduction de la couleur. Cette conclusion a donc orienté le choix de travailler en milieu acide plutôt qu'en milieu neutre, comme dans le cas de la méthode Goulden. En milieu acide, les acides humiques précipitent (De Paolis *et al.*, 1997) et lors de l'extraction avec l'ECSOTE, elles sont entraînées, avec l'émulsion formée lors de l'agitation, dans le ballon de 2 litres où se concentrent les substances organiques.

Préparation des blancs ECSOTE

En 1999 et 2000, les blancs ECSOTE ont été préparés en utilisant 600 ml de dichlorométhane pour extraire un volume total de 5,2, de 6,8 ou de 17,85 litres d'eau nanopure à laquelle on ajoutait, au début de chaque cycle d'extraction de 400 ml, une petite quantité (15 ml) de solution acide chlorhydrique (0,75 N) contenant 200 g/l de NaCl et du méthanol (2 ml) contenant les étalons de recouvrement pour mesurer le pourcentage de récupération. La solution HCl–NaCl était préparée dans de l'eau nanopure et subissait trois extractions successives avec 70 ml de dichlorométhane par 1,5 litre de solution pour enlever les contaminants. Les blancs étaient préparés immédiatement avant l'extraction de l'échantillon. Ces derniers étaient traités de la même manière que les blancs, mais en remplaçant l'eau nanopure par l'échantillon.

Récupération des étalons de recouvrement

Lors des essais réalisés en 1999 selon les méthodes Goulden et ECSOTE, les étalons de recouvrement étaient ajoutés au cours de l'extraction (annexes 2a à 7b). Dans le cas des échantillons d'eau de surface et d'eaux usées, ces essais ont montré qu'il n'y avait pas de différence significative (P > 0,05) entre les deux méthodes quant au pourcentage moyen de récupération des étalons de recouvrement. Les méthodes Goulden et ECSOTE ont donné respectivement des pourcentages moyens de récupération de 67 % et de 72 % pour les BPC, de 75 % et de 75 % pour les HAP ainsi que de 82 % et de 74 % pour les dioxines et les furanes. Lors de cette période, les blancs ECSOTE ont présenté des pourcentages moyens de récupération des étalons de recouvrement de 93 % pour les BPC, de 81 % pour les HAP et de 90 % pour les dioxines et les furanes. À compter du 1er décembre 2000, les étalons de recouvrement ont été ajoutés en une seule opération dans le ballon de 2 litres contenant le dichlorométhane, avant de débuter l'échantillonnage. Deux échantillons d'eau de surface (4 décembre 2000 et 22 janvier 2001), dont les étalons de recouvrement ont été ainsi ajoutés, ont donné des pourcentages moyens de récupération de 87 % pour les BPC, de 83 % pour les HAP et de 77 % pour les dioxines et les furanes. Ces pourcentages sont du même ordre que ceux des échantillons dont les étalons de recouvrement ont été ajoutés au cours de l'extraction. On peut donc supposer que les pertes des étalons de recouvrement observées sont principalement attribuables aux manipulations en laboratoire et non au processus d'échantillonnage et d'extraction. Il a aussi été démontré par Driscoll et al. (1991) qu'il faut un temps d'équilibration de cinq jours après l'ajout des substances à l'échantillon pour refléter les conditions naturelles. Comme c'est le cas avec l'ECSOTE ou le Goulden, il n'est pas possible d'attendre ce délai entre chaque prélèvement d'échantillon. Les pertes des étalons de recouvrement provenant majoritairement des manipulations en laboratoire, on a décidé d'ajouter les étalons dans le ballon de 2 litres contenant le dichlorométhane, avant le début et non au cours de l'échantillonnage par l'ECSOTE.

Résultats des blancs et des échantillons

Les résultats des blancs et des échantillons sont présentés aux annexes 2a à 7b. Les résultats des blancs en quantité totale ont été soustraits des résultats bruts des échantillons suivant le blanc. Une concentration égale à zéro indique une valeur nulle ou négative après la soustraction du blanc. Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro). Tous les résultats ont été corrigés pour les taux de récupération des étalons marqués.

Contamination des échantillons

Dans le cas des échantillons d'eaux usées et des blancs de La Prairie, de la CUQ et de Farnham, il y a eu contamination des échantillons ECSOTE par trois congénères de BPC présents dans des étalons concentrés de BPC utilisés dans l'extraction précédente. Ces étalons ont contaminé le système et les échantillons qui ont suivi ont donc été contaminés par ces trois congénères. Ces étalons contenaient les BPC n° 34 (trichlorobiphényle), n° 109 (pentachlorobiphényle) et n° 207 (nonachlorobiphényle) à des concentrations de 88,89 µg/l, de 177,78 µg/l et de 355,56 µg/l respectivement. Les résultats d'analyse des groupes homologues d'échantillons contaminés ont donc présenté des concentrations élevées de trichlorobiphényles, de pentachlorobiphényles et de nonachlorobiphényles. Afin de corriger les résultats des échantillons contaminés, le degré de

contamination des trois congénères utilisés dans ces étalons a été évalué. Comme il est possible que les manipulations en laboratoire introduisent des contaminations pour les trichlorobiphényles et les pentachlorobiphényles, la contribution du BPC n° 207 dans le cas du groupe des nonachlorobiphényles a d'abord été évaluée en calculant la différence entre la concentration du groupe homologue et les concentrations des congénères BPC n° 206 et n° 208. Soulignons que la proportion du congénère n° 207 est habituellement négligeable dans les échantillons normaux. À partir de ce résultat, les rapports initiaux de concentration des deux autres congénères par rapport au BPC n° 207, soit 1 : 4 et 1 : 2, ont été utilisés pour évaluer la contribution de la contamination des BPC n° 34 et n° 109. Cela a permis d'évaluer la contamination de ces congénères pour les trichlorobiphényles, les pentachlorobiphényles et les nonachlorobiphényles et de corriger les résultats des blancs et des échantillons. Une fois cette correction apportée, on a soustrait les valeurs des blancs de celles des échantillons, en pondérant par les volumes respectifs.

À la suite de cette correction, la somme des congénères individuels de l'échantillon prélevé à Farnham excède de 11 % celle des groupes homologues. Selon les résultats mesurés suivant la méthode Goulden pour le même échantillon, la somme devrait être inférieure de 21 %. Il n'est pas possible d'expliquer cet écart. Toutefois, un écart d'environ 30 % est jugé acceptable, compte tenu des erreurs inhérentes à la méthode.

Dans le cas des échantillons d'eaux usées et d'eau de surface analysés de 1999 à 2001, les HAP totaux présentés sont calculés sans les concentrations de naphtalène, de 2-méthylnaphtalène, de 1-méthylnaphtalène, de phénanthrène, de fluoranthène et de pyrène. Les résultats issus de l'analyse de ces composés sont douteux, puisque ces derniers ont été détectés à quelques occasions, dans les blancs, en concentration supérieure à l'échantillon. On a observé que le joint torique du couvercle du contenant en acier inoxydable constituait une source potentielle de contamination par ces HAP. De plus, plusieurs HAP de la famille des naphtalènes (naphtalène, 1-méthylnaphtalène, 2-méthylnaphtalène, 1-chloronaphtalène et 2-chloronaphtalène) sont des composés fortement volatils et l'étalon utilisé pour évaluer leur récupération est l'acénaphtène, un composé beaucoup moins volatil. En effet, la tension de vapeur du naphtalène à 25 °C est de 0,085 mm Hg, alors que la tension de vapeur de l'acénaphtène à 25 °C est de 0,0025 mm Hg (Syracuse Research Corporation, 2004). En ce qui a trait au 1-chloronaphtalène et au 2-chloronaphtalène, ces substances sont rarement détectées et n'influencent donc que très peu la somme des HAP.

Traitement statistique

Les résultats obtenus pour les BPC, les HAP, les dioxines et les furanes chlorés dans les échantillons en duplicata d'eaux usées et d'eau de surface, extraits par la méthode ECSOTE et la méthode Goulden, ont été analysés statistiquement à l'aide du test de Wilcoxon pour échantillon appariés (wilcoxon's signed-rank test). Le type d'échantillon n'a pas été distingué dans les analyses statistiques. Un niveau de probabilté de 0,05 à été retenu pour déclarer les différences significatives. Toutefois, compte tenu des faibles effectifs utilisés dans les tests (7 à 9 paires de mesures), la puissance du test est faible pour détecter des différences entre les groupes. Les résultats doivent donc être interprétés prudemment. Les analyses ont été effectuées à l'aide du logiciel SigmaStat 3.1 de Systat Software inc.

RÉSULTATS

Comparaisons ECSOTE versus Goulden

La présente section compare les résultats relatifs aux BPC, aux HAP, aux dioxines et aux furanes chlorés mesurés suivant la méthode de l'ECSOTE avec les résultats obtenus suivant la méthode de l'extracteur à grand volume Goulden. Ces comparaisons ont été faites à partir d'échantillons d'eaux usées prélevés à cinq stations d'épuration municipales en 1999 ainsi qu'à partir de cinq échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe, de 1999 à 2001. Les échantillons ont été prélevés en duplicata et les extractions ont été faites dans deux laboratoires différents du Centre d'expertise en analyse environnementale du Québec. Les extractions réalisées à l'aide de l'ECSOTE ont eu lieu au laboratoire de Québec alors que celles réalisées à l'aide de l'extracteur Goulden ont eu lieu au laboratoire de Montréal. Toutes les analyses des BPC, des HAP, des dioxines et des furanes ont été faites au laboratoire de Montréal, en utilisant la même méthode.

Les résultats de la méthode Goulden obtenus aux stations d'épuration municipales représentent la somme des valeurs individuelles des phases particulaires et dissoutes. Dans le cas de l'eau de surface prélevée dans la rivière Yamaska à Saint-Hyacinthe, les résultats des échantillons du 21 et du 28 juin 1999 représentent la somme des valeurs individuelles des phases particulaires et dissoutes. Dans le cas des autres échantillons, elles représentent la valeur totale de l'extrait combiné des phases particulaires et dissoutes. Les résultats obtenus par la méthode ECSOTE se rapportent à la valeur totale des phases particulaires et dissoutes extraites simultanément.

Les comparaisons entre la méthode ECSOTE et la méthode Goulden portent sur des données qualitatives. Le nombre restreint d'échantillons analysés en duplicata (de 3 à 4 échantillons par type d'eau) ne permet pas de faire d'analyse statistique valable. Ces comparaisons visent à vérifier si les deux méthodes présentent des résultats dont les écarts relatifs sont acceptables. Compte tenu du nombre restreint d'échantillons en duplicata analysés suivant la méthode ECSOTE et la méthode Goulden et du fait que les échantillons en duplicata ne proviennent pas du même échantillon, mais de deux échantillons prélevés l'un après l'autre, un écart relatif inférieur à 60 % a été jugé acceptable pour déclarer comparable les deux méthodes. L'écart relatif étant définit comme la différence entre le résultat obtenu par la méthode Goulden et le résultat obtenu par la méthode ECSOTE, divisé par la moyenne des deux et exprimé en pourcentage.

Les écarts relatifs entre les deux méthodes seront aussi comparés aux écarts révélés par les essais, effectués à l'aide de l'extracteur Goulden, sur 38 échantillons en duplicata prélevés entre le 23 octobre 2000 et le 18 janvier 2005. Ces échantillons pairés reflètent la variabilité de la méthode pour deux échantillons d'eau de surface prélevés successivement au même site dont l'un a été filtrés en laboratoire et l'autre sur le site d'échantillonnage (25 paires d'échantillons), ou encore filtrés sur le terrain (9 paires d'échantillons) ou filtrés en laboratoire (4 paires d'échantillons) (annexe 8). Ces essais, effectués dans différentes conditions, ont révélé des écarts relatifs variant, dans le cas des BPC, de 0 % à 78 % (moyenne de 28 %), des dioxines, de 0 % à 128 % (moyenne de 24 %), des furanes, de 0 % à 200 % (moyenne de 38 %), des dioxines et des furanes totaux, de 0 % à 120 % (moyenne de 24 %) et des HAP du groupe 1 (considérés potentiellement cancérogènes pour l'humain), de 0 % à 46 % (moyenne de 14 %).

Biphényles polychlorés (BPC)

Le tableau 1a indique les concentrations totales de BPC présentes dans les eaux usées des stations d'épuration municipales déterminées à partir de l'analyse des groupes homologues. Le détail des concentrations mesurées dans les groupes homologues (8 groupes) et dans les différents congénères (43 congénères) dosés est présenté à l'annexe 2. Les concentrations totales de BPC présentes dans l'eau de surface de la rivière Yamaska prélevées à Saint-Hyacinthe sont présentées au tableau 1b, alors que les résultats détaillés sont présentés à l'annexe 3.

Tableau 1a Comparaison des BPC totaux (pg/l) présents dans les eaux usées de stations d'épuration municipales selon les méthodes Goulden et ECSOTE

	Martinville 31 mai 1999	La Prairie 16 juin 1999	CUQ 6 juillet 1999	Farnham 12 juillet 1999
Goulden	1 774,6	2 362,2	8 379,0	2 412,0
ECSOTE	528,51	2 082,4	6 760,5	2 481,8
Écart (%) ²		+ 13	+ 21	- 3

Une partie de la fraction particulaire de l'échantillon est demeurée dans le cylindre d'échantillonnage et n'a pas été extraite avec l'ECSOTE.

Tableau 1b Comparaison des BPC totaux (pg/l) présents dans l'eau de surface de la rivière Yamaska à Saint-Hyacinthe selon les méthodes Goulden et ECSOTE

	25 mai 1999	28 juin 1999	4 décembre 2000	22 janvier 2001
Goulden	839,9	828,4	392,0	393,3
ECSOTE	711,3	833,9	474,6	367,0
Écart (%) ¹	+ 17	- 1	- 19	+ 7

Différence entre le résultat obtenu par la méthode Goulden et le résultat obtenu par la méthode ECSOTE, divisée par la moyenne des deux et exprimée en pourcentage.

Les résultats obtenus à partir de l'échantillonnage effectué à Cookshire ne sont pas présentés, puisque dans le cas de la méthode Goulden, seule la phase dissoute a été dosée. La phase particulaire de même que l'échantillon ECSOTE étaient trop chargés en matière organique, ce qui causait de l'interférence et rendait le dosage impossible. Les résultats d'analyse de

Différence entre le résultat obtenu par la méthode Goulden et le résultat obtenu par la méthode ECSOTE, divisée par la moyenne des deux et exprimée en pourcentage.

l'échantillon d'eaux usées prélevé à la station d'épuration de Martinville, extrait avec l'ECSOTE, sont présentés uniquement à titre indicatif. Les résultats de cet échantillonnage ne seront pas considérés dans les comparaisons, car une partie de l'échantillon est demeurée dans le contenant d'échantillonnage et n'a pas été extraite avec l'ECSOTE. Les résultats relatifs à l'eau de surface de la rivière Yamaska du 21 juin 1999 ne sont pas présentés, puisque le blanc de l'échantillon ECSOTE a été contaminé par des étalons de récupération à deux reprises.

Dans le cas des BPC totaux (somme des groupes homologues), les échantillons d'eaux usées prélevés à La Prairie, à la CUQ et à Farnham ont montré des écarts variant de - 3 % à + 21 % avec un écart moyen de 12 % (tableau 1a). Les BPC n'ont pas pu être dosés dans l'échantillon prélevé à Cookshire, en raison des interférences survenues lors des analyses.

Les échantillons d'eau de surface ont, quant à eux, présenté des écarts variant de - 19 % à + 17 %, avec un écart moyen de 11 % (à l'exception de l'échantillon du 21 juin 1999) (tableau 1b).

Considérées globalement, les variations entre les résultats pour les échantillons en duplicata d'eaux usées et d'eau de surface étaient aléatoires et ne montraient pas de biais systématique par l'une ou l'autre des deux méthodes (P > 0.05).

Les écarts entre les deux méthodes, qu'il s'agisse des eaux usées ou de l'eau de surface, sont comparables à la variabilité obtenue à l'aide de l'extracteur Goulden à partir de 36 échantillons d'eau de surface prélevés en duplicata durant la période du 26 mars 2001 au 10 mai 2004. Lors de ces essais, on comparait aussi la filtration en laboratoire et la filtration *in situ*. Les écarts (en valeurs absolues) observés s'étendaient de 0 % à 78 %, avec un écart moyen de 28 %. Le quart des mesures présentaient des écarts qui fluctuaient de 35 % à 78 % (annexe 8).

Dans le cas des BPC totaux, compte tenu des écarts observés, les deux méthodes d'extraction (Goulden et ECSOTE) ont donné des résultats comparables à ceux obtenus à partir des échantillons en duplicata provenant d'eaux usées et de l'eau de surface.

Hydrocarbures aromatiques polycycliques (HAP)

Au total, 47 HAP ont été analysés et sont regroupés en deux catégories, selon leur potentiel de cancérogénicité: 15 HAP appartenant au groupe 1 sont considérés potentiellement cancérogènes pour l'humain, selon l'International Agency for Research on Cancer (IARC, 1987), alors que les 32 HAP du groupe 2 présentent une évidence limitée de cancérogénicité pour l'humain, telle que la définit l'IARC.

Le tableau 2a présente les concentrations des HAP du groupe 1 et des HAP totaux présents dans les eaux usées des cinq stations d'épuration municipales et le tableau 2b présente les résultats d'analyse de l'eau de surface prélevée à Saint-Hyacinthe. Les HAP totaux présentés sont calculés sans les concentrations de naphtalène, de 2-méthylnaphtalène, de 1-méthylnaphtalène, de phénanthrène, de fluoranthène et de pyrène. Ces substances ont été exclues, compte tenu que dans le cas des deux méthodes comparées, les résultats relatifs aux naphtalènes étaient peu fiables en raison de la volatilité de cette substance et les résultats relatifs aux trois autres

substances, en raison du risque de contamination par un joint torique sur les contenants d'échantillonnage. Les annexes 4a, 4b, 5a et 5b présentent la liste des différents HAP analysés selon leur catégorie et les résultats détaillés relatifs à leur concentration dans les eaux usées des cinq stations d'épuration municipales et dans l'eau de surface de la rivière Yamaska.

Tableau 2a Comparaison des HAP du groupe 1 et des HAP totaux (ng/l) présents dans les eaux usées de stations d'épuration municipales selon les méthodes Goulden et ECSOTE

		Martinville 31 mai 1999	La Prairie 16 juin 1999	CUQ 6 juillet 1999	Farnham 12 juillet 1999	Cookshire 12 juillet 1999
HAP groupe 1	Goulden	1,19	12,49	21,20	9,46	0,00
	ECSOTE	0.00^{2}	8,73	23,44	19,53	0,00
Écart (%) ¹			+ 35	- 10	- 69	0
HAP totaux	Goulden	18,06	40,15	172,72	20,60	19,66
	ECSOTE	11,10 ²	21,62	112,08	32,07	72,20
Écart (%) ¹			+ 60	+ 43	- 44	- 53

Différence entre le résultat obtenu par la méthode Goulden et le résultat obtenu par la méthode ECSOTE, divisée par la moyenne des deux et exprimée en pourcentage.

Tableau 2b Comparaison des HAP du groupe 1 et des HAP totaux (ng/l) présents dans l'eau de surface de la rivière Yamaska à Saint-Hyacinthe selon les méthodes Goulden et ECSOTE

		25 mai 1999	21 juin 1999	28 juin 1999	4 décembre 2000	22 janvier 2001
HAP groupe 1	Goulden	17,76	2,46	4,04	2,75	0,68
	ECSOTE	14,55	1,81	7,45	5,02	1,34
Écart (%) ¹		+ 20	+ 30	- 59	- 58	- 65
HAP totaux	Goulden	35,68	18,26	11,72	14,13	7,22
	ECSOTE	29,09	6,41	16,96	13,90	5,56
Écart (%) ²		+ 20	+ 96	- 37	+ 2	+ 26

Différence entre le résultat obtenu par la méthode Goulden et le résultat obtenu par la méthode ECSOTE, divisée par la moyenne des deux et exprimée en pourcentage.

² Une partie de la fraction particulaire de l'échantillon est demeurée dans le cylindre d'échantillonnage et n'a pas été extraite avec l'ECSOTE.

Les concentrations des HAP mesurées dans les effluents municipaux (à l'exception de l'échantillon prélevé à Martinville) ont donné, dans le cas des HAP totaux, des écarts variant de -44% à +60%, avec un écart moyen de 50% entre les deux méthodes. Dans le cas des HAP du groupe 1, les écarts varient de -69% à +35%, avec un écart moyen de 28,5% (tableau 2a).

Dans l'eau de surface, les concentrations de HAP totaux présentent des écarts de - 37 % à 96 %, avec un écart moyen de 36,2 %. Quant aux HAP du groupe 1, les écarts fluctuent de - 65 % à + 30 %, avec un écart moyen de 46,4 % (tableau 2b).

Considérées globalement, les variations entre les résultats pour les échantillons en duplicata d'eaux usées et d'eau de surface étaient aléatoires et ne montraient pas de biais systématique par l'une ou l'autre des deux méthodes (P > 0.05).

Les écarts moyens entre les deux méthodes, tant dans le cas des eaux usées que dans le cas de l'eau de surface, semblent plus élevés en ce qui concerne les HAP du groupe 1 que ceux obtenus avec l'extracteur Goulden à partir des 36 échantillons d'eau de surface, prélevés en duplicata, entre mars 2001 et mai 2004. Concernant les HAP du groupe 1, les écarts (en valeurs absolues) observés s'étendaient de 0 % à 46 %, avec un écart moyen de 14 %. Le quart des mesures présentaient des écarts qui fluctuaient de 22 % à 46 % (annexe 8).

Concernant les HAP du groupe 1, sept essais comparatifs sur neuf réalisés à l'aide des extracteurs Goulden et ECSOTE présentaient un écart inférieur à 60 %. Compte tenu qu'il n'y a pas de biais systématique entre les deux méthodes d'extraction, on considère qu'elles donnent des résultats du même ordre.

Dioxines et furanes chlorés

Les concentrations de 7 polychlorodibenzo-*p*-dioxines (dioxines) et de 10 polychlorodibenzofuranes (furanes) ont été mesurées individuellement dans les échantillons d'eau. Parmi ces substances, on considère que la 2,3,7,8-tétrachlorodibenzo-*p*-dioxine (2,3,7,8-T₄CDD) est la plus toxique. Le concept d'équivalence toxique a été introduit pour évaluer la toxicité globale de l'ensemble des dioxines et des furanes, tout en tenant compte de leur toxicité individuelle. Un facteur d'équivalence de la toxicité a été attribué à chaque dioxine et à chaque furane, selon leur toxicité par rapport à celle de la 2,3,7,8-T₄CDD. Pour obtenir la concentration exprimée en équivalents toxiques, on multiplie la concentration de la substance par son facteur d'équivalence. La concentration exprimée en équivalents toxiques totaux est obtenue en faisant la sommation des concentrations en équivalents toxiques de chacune des dioxines et de chacun des furanes analysés. Les facteurs d'équivalence pour chacune des substances dosées sont indiqués au tableau 3 (OTAN, 1988).

Le tableau 4a présente les concentrations des dioxines et des furanes totaux présents dans les eaux usées des stations d'épuration municipales déterminées à partir de l'analyse des groupes homologues, et le tableau 4b présente les résultats de l'analyse de l'eau de surface prélevée à Saint-Hyacinthe. Les résultats détaillés des différents congénères de même que les concentrations exprimées en équivalents toxiques de la 2,3,7,8-T₄CDD sont présentés aux annexes 6a, 6b, 7a et 7b.

Tableau 3 Facteurs d'équivalence des dioxines et des furanes chlorés

Dioxines	Facteur	Furanes	Facteur
	d'équivalence		d'équivalence
2,3,7,8-T ₄ CDD	1,0	2,3,7,8-T ₄ CDF	0,1
1,2,3,7,8-P ₅ CDD	0,5	1,2,3,7,8-P ₅ CDF	0,05
1,2,3,4,7,8-H ₆ CDD	0,1	$2,3,4,7,8-P_5CDF$	0,5
$1,2,3,6,7,8$ - H_6 CDD	0,1	1,2,3,4,7,8-H ₆ CDF	0,1
1,2,3,7,8,9-H ₆ CDD	0,1	1,2,3,6,7,8-H ₆ CDF	0,1
1,2,3,4,6,7,8-H ₇ CDD	0,01	2,3,4,6,7,8-H ₆ CDF	0,1
O_8CDD	0,001	1,2,3,7,8,9-H ₆ CDF	0,1
		1,2,3,4,6,7,8-H ₇ CDF	0,01
		1,2,3,4,7,8,9-H ₇ CDF	0,01
		O_8CDF	0,001

Source: OTAN, 1988.

Tableau 4a Comparaison des dioxines et des furanes chlorés (pg/l) présents dans les eaux usées de stations d'épuration municipales selon les méthodes Goulden et ECSOTE

		Martinville 31 mai 1999	La Prairie 16 juin 1999	CUQ 6 juillet 1999	Farnham 12 juillet 1999	Cookshire 12 juillet 1999
Dioxines	Goulden	23,43	8,38	38,26	36,52	117,39
	ECSOTE	2,39 ¹	_2	33,41	47,82	222,12
Écart (%) ³				+ 14	- 27	- 62
Furanes	Goulden	0,00	0,40	3,44	5,53	506,68
	ECSOTE	3,00 ¹	_2	3,40	9,50	1 875,87
Écart (%) ³				+ 1	- 53	- 115
Dioxines et	Goulden	23,43	8,78	41,7	42,05	624,07
furanes totaux	ECSOTE	5,39 ¹	_2	36,81	57,32	2 097,99
Écart (%) ³				+ 12	- 31	- 108
Équivalents	Goulden	0,033	0,016	0,069	0,070	2,337
toxiques à la 2,3,7,8-TCDD	ECSOTE	0,0311	_2	0,135	0,133	7,789
Écart (%)				- 65	- 62	- 108

¹ Une partie de la fraction particulaire de l'échantillon est demeurée dans le cylindre d'échantillonnage et n'a pas été extraite avec l'ECSOTE.

² Données non rapportées; le blanc (10 juin 1999) précédant l'échantillon de La Prairie montre une contamination inhabituelle en dioxines et en furanes.

³ Différence entre le résultat obtenu par la méthode Goulden et le résultat obtenu par la méthode ECSOTE, divisée par la moyenne des deux et exprimée en pourcentage.

Tableau 4b Comparaison des dioxines et des furanes chlorés (pg/l) présents dans l'eau de surface de la rivière Yamaska à Saint-Hyacinthe selon les méthodes Goulden et ECSOTE

		25 mai 1999	21 juin 1999	28 juin 1999	4 décembre 2000	22 janvier 2001
Dioxines	Goulden	22,32	8,29	13,65	8,86	5,00
	ECSOTE	16,46	_1	16,91	8,59	4,60
Écart (%) ²		+ 30		- 21	+ 3	+ 8
Furanes	Goulden	4,63	1,51	1,60	1,60	0,41
	ECSOTE	4,38	_1	3,44	2,02	0,76
Écart (%) ²		+ 6		- 73	- 23	- 60
Dioxines et	Goulden	26,95	9,8	15,25	10,46	5,41
furanes totaux	ECSOTE	20,84		20,35	10,61	5,36
Écart (%) ²		+ 26		- 29	- 1	+ 1
Équivalents	Goulden	0,153	0,021	0,040	0,028	0,010
toxiques à la 2,3,7,8-TCDD	ECSOTE	0,103	_1	0,076	0,021	0,016
Écart (%) ²		+ 39		- 62	+ 29	- 46

Données non rapportées; le blanc (17 juin 1999) précédant l'échantillon du 21 juin 1999 montre une contamination inhabituelle en dioxines et en furanes.

Les résultats de l'échantillon du 16 juin 1999 prélevé à La Prairie n'ont pas été considérés, compte tenu que le blanc ECSOTE (10 juin 1999) précédant cet échantillon est contaminé en dioxines et en furanes chlorés. Cette contamination inhabituelle du blanc n'a pas pu être expliquée et met en doute la validité des résultats des dioxines et des furanes obtenus à partir de l'échantillon de La Prairie.

L'échantillon d'eau de surface de la rivière Yamaska du 21 juin 1999 n'a pas été considéré, compte tenu que le blanc ECSOTE (17 juin 1999) précédant cet échantillon était contaminé par des dioxines et des furanes.

Dans les effluents municipaux de la CUQ, de Farnham et de Cookshire, les écarts entre les méthodes Goulden et ECSOTE relatifs aux dioxines et aux furanes totaux ont été de - 108 %, - 31 % et + 12 %, avec un écart moyen de 50,3 % (tableau 4a). L'écart le plus important a été observé à Cookshire, où l'échantillon analysé selon la méthode ECSOTE présentait des

² Différence entre le résultat obtenu par la méthode Goulden et le résultat obtenu par la méthode ECSOTE, divisée par la moyenne des deux et exprimée en pourcentage.

concentrations beaucoup plus élevées que celui analysé selon la méthode Goulden. Dans le cas de cet échantillon, les concentrations en HAP totaux obtenues par l'ECSOTE étaient très supérieures à celles obtenues par l'extracteur Goulden. L'échantillon prélevé à Cookshire avait présenté des interférences relatives au BPC et il était très chargé en matières organiques, comme l'indique la demande chimique en oxygène (DCO) (90 mg/l). Étant donné que cet échantillon était très chargé en matières organiques, il est possible que le temps d'extraction de la méthode Goulden n'ait pas été suffisamment long pour réussir à extraire toute la matière organique, ou bien que l'interaction entre la matière organique dissoute et les contaminants organiques ait été trop forte à pH neutre pour réussir à extraire tous les contaminants (Maguire *et al.*, 1989; Maguire *et al.*, 1993). La durée de l'extraction est plus longue dans le cas de la méthode ECSOTE et elle est réalisée dans un milieu acide plutôt que dans un milieu presque neutre, comme dans le cas de la méthode Goulden.

Plus spécifiquement, en ce qui a trait aux dioxines, les écarts entre les deux méthodes ont été de - 62 %, - 27 % et + 14 %, avec un écart moyen de 34,3 %, alors que les écarts relatifs aux furanes ont été de - 115 %, - 53 % et + 1 %, avec un écart moyen de 56,3 %.

Dans le cas des échantillons d'eaux usées, les écarts entre les deux méthodes demeurent relativement importants quant aux teneurs exprimées en équivalents toxiques à la 2,3,7,8-TCDD. Les écarts sont de - 108 %, - 65 % et - 62 % en ce qui concerne les échantillons de Farnham, de Cookshire et de la CUQ repectivement. Dans le cas de ces trois échantillons, la méthode ECSOTE donne des résultats exprimés en équivalents toxiques à la 2,3,7,8-TCDD notablement plus élevés que la méthode Goulden.

Dans le cas des échantillons d'eau de surface prélevés à Saint-Hyacinthe, les écarts relatifs aux concentrations en dioxines et en furanes totaux ont fluctué de - 29 % à + 26 %, avec un écart moyen de 10,3 % (tableau 4b). Les écarts observés, ainsi que les concentrations des dioxines et des furanes totaux présents dans l'eau de surface, sont plus faibles que celles présentes dans les eaux usées.

Plus spécifiquement, dans le cas des dioxines, les écarts entre les deux méthodes ont varié de -21 % à +30 %, avec un écart moyen de 10,7 %, alors que les écarts relatifs aux furanes ont fluctué de -73 % à +6 %, avec un écart moyen de 52 %. Les écarts relatifs aux furanes semblent un peu plus importants que les écarts relatifs aux dioxines, mais à des concentrations plus faibles.

Dans le cas de l'eau de surface, les concentrations exprimées en équivalents toxiques à la 2,3,7,8-TCDD présentent des écarts variant de - 62 % à + 39 %, avec un écart moyen de 47,5 %.

Considérées globalement, les variations entre les résultats pour les échantillons en duplicata d'eaux usées et d'eau de surface étaient aléatoires et ne montraient pas de biais systématique par l'une ou l'autre des deux méthodes (P > 0.05). Toutefois, dans les eaux usées, un écart important a été observé entre les résultats par les méthodes ECSOTE et Goulden dans le cas de l'échantillon prélevé à Cookshire.

Les écarts moyens entre les deux méthodes, observés dans les échantillons d'eaux usées (à l'exception de l'échantillon de Cookshire) et dans les échantillons d'eau de surface

relativement aux dioxines et aux furanes totaux, sont du même ordre que les écarts obtenus avec l'extracteur Goulden à partir des 36 échantillons d'eau de surface prélevés en duplicata entre mars 2001 et mai 2004. Concernant les dioxines et les furanes totaux, les écarts observés en valeurs absolues s'étendaient de 0 % à 120 %, avec un écart moyen de 24 %. Parmi ces mesures, le quart présentaient un écart variant de 35 % à 120 % (annexe 8).

Lors des mêmes essais réalisés avec la méthode Goulden, les écarts en valeurs absolues entre les duplicatas ont varié, dans le cas des dioxines, de 0 % à 128 %, avec un écart moyen de 24 %, et dans le cas des furanes, de 0 % à 200 %, avec un écart moyen de 38 %. Le quart des mesures relatives aux dioxines présentaient des écarts variant de 33 % à 128 % et de 38 % à 200 %, dans le cas des furanes.

Quant aux concentrations en équivalents toxiques à la 2,3,7,8-TCDD, les 36 échantillons en duplicata analysés selon la méthode Goulden ont montré des écarts en valeurs absolues variant de 0 % à 171 %, avec un écart moyen de 39 %. Le quart des mesures présentaient des écarts qui fluctuaient de 57 % à 171 %.

Les résultats comparatifs concernant les dioxines et les furanes chlorés montrent que les méthodes Goulden et ECSOTE donnent des résultats comparables dans le cas de l'eau de surface. Dans le cas des eaux usées, les écarts entre les deux méthodes semblent plus importants, bien qu'ils demeurent à l'intérieur de la variabilité observée relativement à 36 échantillons en duplicata analysés selon la méthode Goulden.

CONCLUSION

Les résultats des essais de comparaison des méthodes ECSOTE et Goulden ayant trait aux BPC, aux HAP totaux et aux dioxines et aux furanes chlorés totaux montrent qu'en ce qui concerne les trois groupes de substances étudiées, les écarts moyens en valeur absolue entre les deux méthodes à partir des échantillons d'eaux usées sont respectivement de 12 %, 50 % et 50 %. Dans le cas des échantillons d'eau de surface, les écarts moyens sont respectivement de 11 %, 36 % et 14 %. Les variations entre les deux méthodes sont aléatoires et ne montrent pas de biais systématique pour l'une ou l'autre des deux méthodes.

RÉFÉRENCES BIBLIOGRAPHIQUES

BLEAU, H., 2002. L'effet des inondations de juillet 1996 sur les lacs et les rivières de la région du Saguenay : contamination de l'eau, des sédiments et des poissons par les substances toxiques, Québec, ministère de l'Environnement, Direction du suivi de l'état de l'environnement, Envirodoq n° ENV/2002/0283, 59 p. et 12 annexes, [http://www.mddep.gouv.qc.ca/eau/eco_aqua/saguenay/saguenay-final.pdf].

CENTRE D'EXPERTISE EN ANALYSE ENVIRONNEMENTALE DU QUÉBEC (CEAEQ), 2001. Détermination des biphényles polychlorés (congénères); Dosage par chromatographie en phase gazeuse couplée à un spectromètre de masse à haute résolution, MA. 400–BPCHR 1.0, ministère de l'Environnement du Québec, 43 p., [http://www.ceaeq.gouv.qc.ca/methodes/pdf/MA400BPCHR10.pdf].

CENTRE D'EXPERTISE EN ANALYSE ENVIRONNEMENTALE DU QUÉBEC (CEAEQ), 2002. Détermination des dibenzo-para-dioxines polychlorés et dibenzofuranes polychlorés; Dosage par chromatographie en phase gazeuse couplé à un spectromètre de masse, MA. 400–D.F. 1.0, ministère de l'Environnement du Québec, 42 p., [http://www.ceaeq.gouv.qc.ca/methodes/pdf/MA400DF10.pdf].

COSSA, D., B. RONDEAU, T. PHAM, S. PROULX et B. QUÉMERAIS, 1996. *Principes et pratiques d'échantillonnage d'eaux naturelles en vue du dosage de substances et d'éléments présents à l'état de traces et ultra-traces*, Environnement Canada – région du Québec, Conservation de l'environnement, Centre Saint-Laurent, document de travail DT-5, 26 p.

COSSA, D., T. PHAM, B. RONDEAU, B. QHÉMERAIS, S. PROULX et C. SURETTE, 1998. *Bilan massique des contaminants chimiques dans le fleuve Saint-Laurent*, Environnement Canada, région du Québec, Conservation de l'environnement, Centre Saint-Laurent, rapport scientifique et technique ST-163, 258 p.

DE PAOLIS, F. et J. KUKKONEN, 1997. "Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material", *Chemosphere*, vol. 34, n° 8, p. 1693-1704.

DRISCOLL, M. S., J. P. HASSETT et C. L. FISH, 1991. "Extraction efficiencies of organochlorine compounds from Niagara River water", *Environmental Science and Technology*, vol. 25, n° 8, p. 1432-1439.

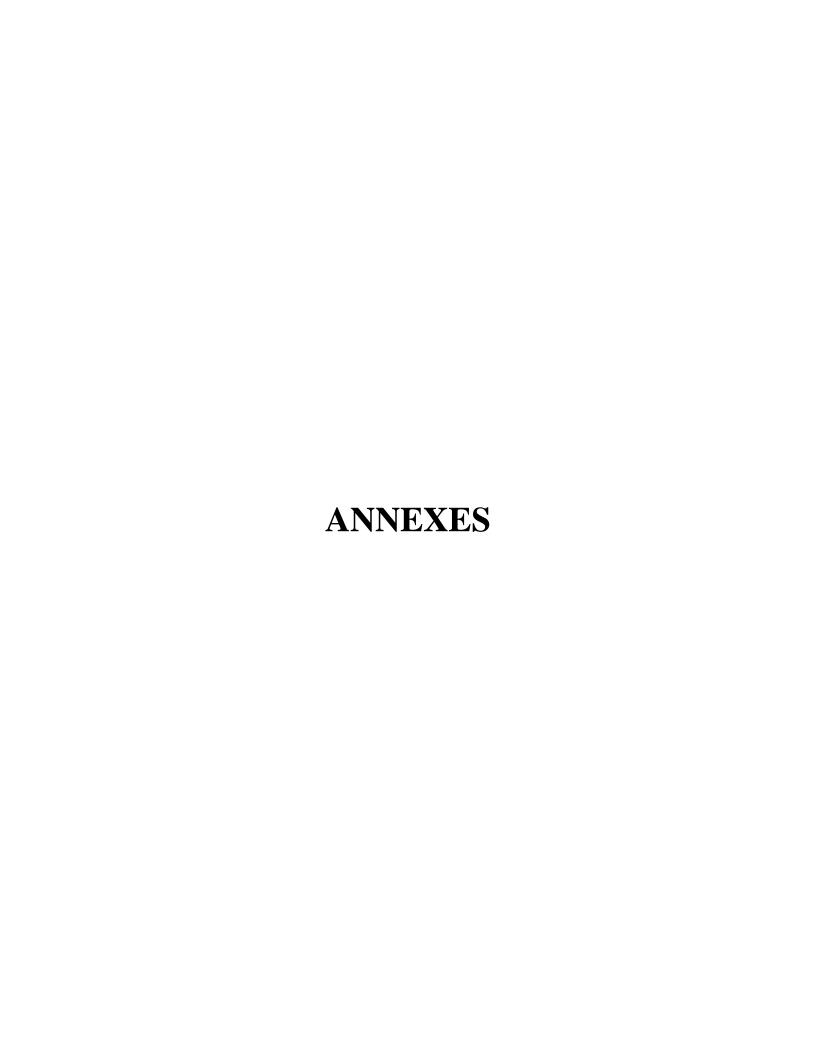
GOULDEN, P. D. et D. H. J. ANTHONY, 1985. *Design of a large sample extractor for the determination of organics in water*, National Water Research Institute, Canada Center for Inlands Water, Burlington, ON, NWRI Contribution Number 85-121.

INTERNATIONAL AGENCY FOR RESEARCH ON CANCER (IARC), 1987. *IARC Monographs on the Evaluation of Carcinogenic Risks to Humans – Overall Evaluations of Carcinogenicity: an Updating of IARC Monographs*, volumes 1 à 42, supplément 7, World Health Organization.

LAPIERRE, L., 1999. Le bassin de la rivière Yamaska: contamination du poisson en 1995, section 4, dans ministère de l'Environnement (éd.), *Le bassin de la rivière Yamaska: état de l'écosystème aquatique*, Québec, Direction des écosystèmes aquatiques, Envirodoq n° EN990224, rapport n° EA-14.

MAGUIRE, R. J. et R. J. TKACZ, 1989. "Potential underestimation of chlorinated hydrocarbon concentrations in fresh water", *Chemosphere*, vol. 19, nos 8-9, p. 1277-1287.

MAGUIRE, R. J., R. J. TKACZ et S. P. BATCHELOR, 1993. "Extraction efficiencies of hydrocarbons from Niagara River water", *Environmental Toxicology and Chemistry*, vol. 12, p. 805-811.


MINISTÈRE DE L'ENVIRONNEMENT DU QUÉBEC et ENVIRONNEMENT CANADA, 2001. Évaluation du potentiel toxique des effluents des stations d'épuration municipales du Québec – Rapport final, Saint-Laurent Vision 2000, phase III – volet industriel et urbain, 136 p. et annexes.

MORLOT, M., T. FRANÇAIS et C. ROSIN, 1996. « Présentation de quatre types de prélèvements intégrateurs pour pallier l'insuffisance de prélèvements extemporanés face à la variabilité de la qualité des eaux à analyser », *Techniques*, *sciences*, *méthodes*, n°6, p. 437-442.

MUYLDERMANS, J., P. BROCHU, D. LALIBERTÉ, R. LEDUC et P. LECLERC, 2002. Étude des sources de contamination des lacs Lovering et Massawippi par des substances toxiques - Résultats de la campagne d'échantillonnage réalisée en 2001, Québec, ministère de l'Environnement, Direction du suivi de l'état de l'environnement et Direction régionale de l'Estrie, Envirodoq n° 2000/0533, 94 p. et 8 annexes.

ORGANISATION DU TRAITÉ DE L'ATLANTIQUE NORD, COMMITEE ON THE CHALLENGES OF MODERN SOCIETY (OTAN), 1988. International Toxicity Equivalency Factor (I-TEF), Method of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds, Pilot Study on International Information Exchange on Dioxins and Related Compounds, rapport n° 176, 31 p.

SYRACUSE RESEARCH CORPORATION, 2004. « Syracuse Research Corporation Physical properties database », dans le site *Syracuse Research Corporation*, [En ligne]. http://www.syrres.com/esc/physdemo.htm (page consultée le 27 mai 2004).

Annexe 1 Limites de détection (pg/l) des substances analysées de mai 1999 à janvier 2001

Substance	Go	ulden	EC	SOTE
	Eaux usées	Eau de surface	Eaux usées	Eau de surface
Congénères de BPC (pg/l)				
IUPAC nº 18	3 à 40	2 à 8	2 à 10	1 à 20
IUPAC nº 17	3 à 30	2 à 6	2 à 9	1 à 10
IUPAC nº 31	2 à 20	1 à 6	1 à 7	0,9 à 10
IUPAC nº 28	2 à 20	1 à 4	1 à 5	0,7 à 8
IUPAC nº 33	2 à 20	1 à 5	1 à 7	0,8 à 10
IUPAC nº 52	0,3 à 3	0,1 à 0,8	0,3 à 1	0,1 à 2
IUPAC nº 49	0,4 à 4	0,1 à 1	0,4 à 1	0,1 à 2
IUPAC nº 44	0,4 à 4	0,1 à 1	0,3 à 1	0,1 à 2
IUPAC nº 74	1 à 7	0,6 à 3	0,8 à 20	0,6 à 2
IUPAC nº 70	1 à 6	0,4 à 2	0,7 à 20	0,5 à 2
IUPAC nº 95	1 à 10	0,7 à 3	0,5 à 4	0,5 à 3
IUPAC nº 101	1 à 10	0,6 à 3	0,5 à 4	0,5 à 3
IUPAC nº 99	1 à 10	0,8 à 3	0,5 à 5	0,6 à 3
IUPAC nº 87	1 à 10	0,9 à 4	0,6 à 5	0,7 à 4
IUPAC nº 110 IUPAC nº 82	0,7 à 7	0,4 à 2	0,3 à 3	0,3 à 2
IUPAC n° 118	1 à 10	0,8 à 3	0,6 à 5	0,6 à 3
IUPAC n° 105	0,7 à 7 1 à 8	0,4 à 2 0,5 à 2	0,3 à 2	0,3 à 2
IUPAC n° 151	0,2 à 3	0,3 à 0,6	0,4 à 3 0,4 à 1	0,4 à 2 0,1 à 2
IUPAC nº 149	0,2 à 3 0,2 à 3	0,3 à 0,5	0,4 a 1 0,3 à 1	0,1 à 2 0,1 à 2
IUPAC nº 153	0,2 à 3 0,2 à 2	0,3 à 0,3 0,2 à 0,4	0,3 à 0,9	0,1 à 2 0,1 à 2
IUPAC nº 132	0,2 à 2 0,3 à 3	0,2 à 0,4 0,4 à 0,6	0,3 à 0,9 0,4 à 1	0,1 a 2 0,2 à 3
IUPAC nº 138	0,2 à 3	0,4 à 0,6 0,3 à 0,5	0,4 å 1 0,3 à 1	0,2 à 3 0,1 à 2
IUPAC n° 158	0,2 à 3 0,1 à 2	0,2 à 0,3	0,2 à 0,7	0,1 à 1
IUPAC nº 128	0,3 à 3	0,2 à 0,5 0,3 à 0,6	0,4 à 1	0,1 à 2
IUPAC nº 156	0,5 à 6	0,2 à 0,8	0,3 à 4	0,4 à 1
IUPAC nº 187	0,2 à 3	0,1 à 0,5	0,3 à 0,9	0,3 à 1
IUPAC nº 183	0,2 à 3	0,1 à 0,5	0,3 à 0,8	0,3 à 1
IUPAC nº 177	0,7 à 4	0,3 à 1	1 à 4	0,3 à 1
IUPAC nº 171	0,7 à 4	0,3 à 1	0,9 à 4	0,3 à 3
IUPAC nº 180	0,6 à 4	0,2 à 0,9	0,8 à 3	0,1 à 3
IUPAC nº 191	0,5 à 3	0,2 à 0,8	0,7 à 2	0,1 à 2
IUPAC nº 170	0,7 à 4	0,2 à 2	0,9 à 3	0,1 à 3
IUPAC nº 199	0,3 à 3	0,1 à 2	0,4 à 1	0,1 à 2
IUPAC n° 195	0,4 à 3	0,2 à 1	0,4 à 2	0,1 à 1
IUPAC n° 194	0,4 à 2	0,2 à 1	0,4 à 2	0,1 à 1
IUPAC n° 205	0,3 à 2	0,2 à 1	0,4 à 2	0,1 à 1
IUPAC nº 208	0,3 à 2	0,1 à 1	0,4 à 0,5	0,1 à 1
IUPAC n° 206	0,4 à 4	0,1 à 2	0,5 à 0,7	0,1 à 1
IUPAC nº 209	0,2 à 2	0,1 à 3	0,2 à 0,5	0,2 à 1
IUPAC nº 77	0,06 à 3	0,01 à 0,1	0,09 à 10	0,01 à 0,1
IUPAC nº 126	0,08 à 0,4	0,02 à 0,2	0,2 à 0,3	0,06 à 0,2
IUPAC nº 169	0,07 à 0,1	0,01 à 0,1	0,08 à 0,3	0,01 à 0,1
BPC homologues (pg/l) Trichorobiphényles	2 à 20	1 à 4	1 à 5	0739
Tétrachlorobiphényles	0,3 à 3	0,1 à 0,7	0,3 à 1	0,7 à 8
Pentachlorobiphényles		0,1 à 0,7 0,4 à 2		0,1 à 2 0,3 à 2
Hexachlorobiphényles	0,7 à 7	,	0,3 à 2	
Heptachlorobiphényles	0,1 à 2 0,2 à 2	0,2 à 0,3 0,1 à 0,4	0,2 à 0,7 0,3 à 0,8	0,1 à 1 0,1 à 1
Octachlorobiphényles	0,2 à 2 0,3 à 2	0,1 à 0,4 0,1 à 1	0,3 à 0,8 0,4 à 1	0,1 à 1 0,1 à 1
Nonachlorobiphényles	0,3 à 2 0,3 à 2	0,1 à 1 0,1 à 1	0,4 à 1 0,4 à 0,5	0,1 à 1 0,1 à 1
Décachlorobiphényles	0,3 à 2 0,2 à 2	0,1 à 1 0,1 à 3	0,4 à 0,5 0,2 à 0,5	0,1 a 1 0,2 à 1
Decacinoroorphenyles	0,2 a 2	0,1 a 3	0,2 a 0,3	0,2 a 1

Annexe 1 Limites de détection (pg/l) des substances analysées de mai 1999 à janvier 2001 (suite)

Substance	Go	ulden	ECSOTE	
	Eaux usées	Eau de surface	Eaux usées	Eau de surface
HAP (ng/l)				
Benzo[a]anthracène	0,06 à 7	0,05 à 0,4	0,2 à 20	0,04 à 0,1
Chrysène	0,05 à 6	0,05 à 0,4	0,2 à 20	0,03 à 0,1
Benzo[b]fluoranthène	0,09 à 0,7	0,06 à 0,2	0,2 à 3	0,07 à 0,2
Benzo[j+k]fluoranthène	0,06 à 2	0,05 à 0,2	0,2 à 10	0,06 à 0,1
Benzo[a]pyrène	0,09 à 2	0,6 à 0,2	0,2 à 10	0,09 à 0,2
Indéno[1,2,3-c,d]pyrène	0,06 à 0,7	0,04 à 0,07	0,1 à 2	0,03 à 0,09
Dibenzo[ac]+[ah]anthracène	0,03 à 0,6	0,01 à 0,07	0,03 à 0,6	0,01 à 0,03
5-méthylchrysène	0,04 à 2	0,04 à 0,3	0,1 à 7	0,03 à 0,09
Dibenzo[a,h]acridine	0,1 à 1	0,06 à 0,1	0,1 à 2	0,09 à 0,2
Dibenzo[a,j]acridine	0,08 à 0,9	0,06 à 0,09	0,1 à 1	0,08 à 0,1
7H-Dibenzo[c,g]carbazole	0,1 à 2	0,07 à 0,1	0,2 à 4	0,09 à 0,2
Dibenzo[a,l]pyrène	0,1 à 1	0,05 à 0,1	0,2 à 3	0,06 à 0,2
Dibenzo[a,e]pyrène	0,02 à 0,3	0,01 à 0,07	0,05 à 0,7	0,02 à 0,05
Dibenzo[a,i]pyrène	0,09 à 3	0,06 à 0,1	0,3 à 5	0,07 à 0,2
Dibenzo[a,h]pyrène	0,08 à 1	0,04 à 0,08	0,3 à 3	0,05 à 0,2
Acénaphtène	0,4 à 4	0,5 à 0,8	1 à 4	0,4 à 0,8
Acénaphthylène	0,2 à 0,9	0,2 à 0,4	0,4 à 1	0,1 à 0,3
Anthracène	0,09 à 2	0,2 à 0,9	0,7 à 5	0,1 à 0,2
Benzo(g,h,i)pérylène	0,08 à 0,8	0,04 à 0,08	0,1 à 2	0,04 à 0,1
Benzo(e)pyrène	0,08 à 2	0,06 à 0,2	0,2 à 10	0,07 à 0,2
Fluoranthène	0,09 à 1	0,1 à 0,4	0,2 à 3	0,07 à 0,2
Fluorène	0,2 à 0,6	0,2 à 0,4	0,5 à 1	0,1 à 0,3
Naphtalène	0,09 à 2	0,1 à 0,4	0,3 à 0,8	0,1 à 0,4
Pérylène	0,08 à 2	0,06 à 0,2	0,2 à 10	0,06 à 0,1
Phénanthrène	0,09 à 2	0,2 à 0,9	0,7 à 5	0,1 à 0,4
Pyrène	0,09 à 1	0,1 à 0,4	0,2 à 3	0,07 à 0,2
1-Méthylnaphtalène	0,06 à 0,4	0,05 à 0,2	0,1 à 0,7	0,06 à 0,1
2-Méthylnaphtalène	0,06 à 0,5	0,05 à 0,2	0,1 à 0,8	0,06 à 0,09
1,3-Diméthylnaphtalène	0,2 à 1	0,1 à 0,2	0,8 à 1	0,1 à 0,4
2-Chloronaphtalène	0,02 à 0,1	0,01 à 0,05	0,01 à 0,2	0,01 à 0,03
1-Chloronaphtalène	0,01 à 0,1	0,009 à 0,06	0,01 à 0,2	0,009 à 0,03
2,3,5-Triméthylnaphtalène	0,2 à 0,8	0,1 à 0,3	0,7 à 1	0,1 à 0,3
Carbazole	0,03 à 0,6	0,04 à 0,2	0,1 à 4	0,05 à 0,3
2-Méthylfluoranthène	0,08 à 2	0,1 à 0,4	0,2 à 4	0,06 à 0,1
Benzo[c]phénanthrène	0,08 à 10	0,08 à 0,4	0,3 à 30	0,06 à 0,2
Benzo[c]acridine	0,02 à 2	0,03 à 0,2	0,07 à 4	0,02 à 0,1
Cyclopenta[c,d]pyrène	0,05 à 7	0,03 à 0,3	0,2 à 20	0,03 à 0,1
2-Méthylchrysène	0,02 à 1	0,02 à 0,2	0,07 à 3	0,02 à 0,06
3-Méthylchrysène	0,02 à 1	0,02 à 0,2	0,07 à 3	0,02 à 0,06
4+6-Méthylchrysène	0,02 à 1	0,02 à 0,2	0,07 à 3	0,02 à 0,06
1-Nitropyrène	0,4 à 30	0,2 à 4	3 à 60	0,3 à 1
7,12-Diméthylbenzo[a]anthracène	0,2 à 10	0,1 à 0,6	0,4 à 40	0,2 à 0,4
3-Méthylcholanthrène	0,2 à 4	0,1 à 0,4	0,4 à 20	0,1 à 0,3
Dibenzo[a,j]anthracène	0,03 à 0,3	0,01 à 0,03	0,03 à 0,6	0,01 à 0,03
Anthanthrène	0,1 à 1	0,07 à 0,1	0,2 à 4	0,08 à 0,2
Dibenzo[a,e]fluoranthène	0,05 à 0,8	0,03 à 0,07	0,2 à 2	0,04 à 0,1
	0,06 à 1	0,03 à 0,1	0,2 à 2	0,03 à 0,1

Annexe 1 Limites de détection (pg/l) des substances analysées de mai 1999 à janvier 2001 (suite)

Substance	Go	ulden	EC	ECSOTE	
	Eaux usées	Eau de surface	Eaux usées	Eau de surface	
Dioxines chlorées (pg/l)					
2,3,7,8-T ₄ CDD	0,04 à 0,1	0,04 à 0,1	0,04 à 0,07	0,01 à 0,07	
1,2,3,7,8-P ₅ CDD	0,01 à 0,08	0,01 à 0,07	0,02 à 0,05	0,01 à 0,05	
1,2,3,4,7,8-H ₆ CDD	0,02 à 0,1	0,01 à 0,06	0,02 à 0,06	0,01 à 0,04	
1,2,3,6,7,8-H ₆ CDD	0,01 à 0,08	0,01 à 0,05	0,01 à 0,05	0,01 à 0,02	
1,2,3,7,8,9-H ₆ CDD	0,02 à 0,08	0,01 à 0,05	0,01 à 0,04	0,01 à 0,03	
1,2,3,4,6,7,8-H ₇ CDD	0,01 à 0,06	0,01 à 0,03	0,01 à 0,04	0,01 à 0,05	
O ₈ CDD	0,03 à 0,1	0,01 à 0,05	0,01 à 0,05	0,01 à 0,04	
Dioxines homologues (pg/l)					
T_4CDD	0,04 à 0,1	0,04 à 0,1	0,04 à 0,07	0,01 à 0,07	
P ₅ CDD	0,03 à 0,08	0,01 à 0,07	0,02 à 0,05	0,01 à 0,05	
H_6CDD	0,01 à 0,08	0,01 à 0,05	0,02 à 0,04	0,01 à 0,02	
H ₇ CDD	0,01 à 0,06	0,01 à 0,03	0,01 à 0,04	0,01 à 0,05	
O ₈ CDD	0,03 à 0,1	0,01 à 0,05	0,01 à 0,05	0,01 à 0,04	
Furanes chlorés (pg/l)					
2,3,7,8-T ₄ CDF	0,02 à 0,08	0,03 à 0,07	0,02 à 0,8	0,02 à 0,07	
1,2,3,7,8-P ₅ CDF	0,02 à 0,1	0,03 à 0,04	0,02 à 0,5	0,02 à 0,03	
2,3,4,7,8-P ₅ CDF	0,02 à 0,1	0,02 à 0,04	0,02 à 0,5	0,02 à 0,03	
1,2,3,4,7,8-H ₆ CDF	0,01 à 0,06	0,03 à 0,04	0,02 à 0,1	0,01 à 0,03	
1,2,3,6,7,8-H ₆ CDF	0,01 à 0,04	0,02 à 0,03	0,02 à 0,09	0,01 à 0,02	
2,3,4,6,7,8-H ₆ CDF	0,01 à 0,05	0,02 à 0,04	0,02 à 0,1	0,01 à 0,03	
1,2,3,7,8,9-H ₆ CDF	0,02 à 0,2	0,03 à 0,04	0,02 à 0,1	0,01 à 0,03	
1,2,3,4,6,7,8-H ₇ CDF	0,02 à 0,4	0,01 à 0,05	0,02 à 0,1	0,01 à 0,06	
1,2,3,4,7,8,9-H ₇ CDF	0,02 à 0,4	0,01 à 0,06	0,03 à 0,2	0,01 à 0,08	
O ₈ CDF	0,01 à 0,07	0,01 à 0,04	0,01 à 0,04	0,01 à 0,03	
Furanes homologues (pg/l)					
T ₄ CDF	0,02 à 0,08	0,03 à 0,07	0,02 à 0,8	0,02 à 0,07	
P ₅ CDF	0,02 à 0,1	0,02 à 0,04	0,02 à 0,5	0,02 à 0,03	
H ₆ CDF	0,01 à 0,04	0,02 à 0,03	0,02 à 0,09	0,01 à 0,02	
H ₇ CDF	0,02 à 0,4	0,01 à 0,05	0,02 à 0,1	0,01 à 0,06	
O ₈ CDF	0,01 à 0,5	0,01 à 0,04	0,01 à 0,04	0,01 à 0,03	

Annexe 2a Concentrations des BPC (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eaux usées prélevés aux stations d'épuration municipales

BPC Congénères	Martinville 1999-05-13	La Prairie 1999-06-10	CUQ 1999-07-05	Farnham 1999-07-09	Cookshire 1999-07-13
Trichlorobiphényles		_		_	
IUPAC nº 18	ND	ND	ND	ND	ND
IUPAC nº 17	ND	ND	ND	ND	ND
IUPAC nº 31	190,4	78,0	327,6	ND	421,2
IUPAC nº 28	122,4	150,8	390,0	ND	431,6
IUPAC nº 33	156,4	62,4	ND	ND	265,2
Tétrachlorobiphényles				_	
IUPAC nº 52	204,0	124,8	223,6	156,0	234,0
IUPAC n° 49	122,4	ND	ND	ND	114,4
IUPAC nº 44	68,0	67,6	104,0	62,4	124,8
IUPAC n° 74	61,2	26,0	37,4	ND	83,2
IUPAC nº 70	81,6	57,2	109,2	72,8	135,2
Pentachlorobiphényles					
IUPAC nº 95	129,2	93,6	135,2	ND	ND
IUPAC nº 101	190,4	ND	176,8	ND	156,0
IUPAC n° 99	61,2	52,0	ND	ND	ND
IUPAC n° 87	ND	ND	ND	ND	ND
IUPAC nº 110	ND	67,6	83,2	ND	88,4
IUPAC n° 82	ND	ND	ND	ND	ND
IUPAC nº 118	ND	36,4	ND	ND	ND
IUPAC nº 105	ND	ND	ND	ND	ND
Hexachlorobiphényles				_	
IUPAC n° 151	40,8	20,8	ND	ND	ND
IUPAC n° 149	ND	ND	88,4	72,8	ND
IUPAC nº 153	380,8	ND	ND	ND	62,4
IUPAC nº 132	13,6	31,2	ND	ND	ND
IUPAC nº 138	61,2	57,2	ND	ND	38,0
IUPAC nº 158	ND	ND	ND	ND	ND
IUPAC nº 128	ND	ND	ND	ND	ND
IUPAC n° 156	ND	ND	ND	ND	ND
Heptachlorobiphényles					
IUPAC nº 187	ND	52,0	52,0	ND	ND
IUPAC nº 183	ND	20,8	ND	ND	ND
IUPAC nº 177	ND	ND	ND	ND	ND
IUPAC nº 171	ND	ND	ND	ND	ND
IUPAC nº 180	217,6	ND	130,0	145,6	176,8
IUPAC nº 191	ND	ND	ND	ND	ND
IUPAC nº 170	ND	ND	ND	ND	ND
Octachlorobiphényles					
IUPAC nº 199	ND	83,2	57,2	ND	119,6
IUPAC n° 195	ND	ND	ND	ND	ND
IUPAC n° 194	122,4	ND	104,0	104,0	182,0
IUPAC n° 205	ND	ND	ND	ND	ND
Nonachlorobiphényles					
IUPAC n° 208	ND	ND	ND	ND	ND
IUPAC nº 206	34,0	57,2	ND	ND	109,2
Décachlorobiphényles					
IUPAC nº 209	ND	31,2	5,2	364,0	ND
Planaires					
IUPAC nº 77		ND	ND	ND	ND
IUPAC nº 126		ND	ND	ND	ND
IUPAC nº 169	ND	5,2	ND	ND	ND
Total ¹	2 257,6	1 175,2	2 023,8	977,6	2 742,0

ND : non détecté DNQ : détecté non quantifié NDR : détecté, mais ne satisfait pas le rapport isotopique

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Annexe 2a Concentrations des BPC (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eaux usées prélevés aux stations d'épuration municipales (suite)

BPC Groupes homologues	Martinville 1999-05-13	La Prairie 1999-06-10	CUQ 1999-07-05	Farnham 1999-07-09	Cookshire 1999-07-13
Trichorobiphényles	469,2	352,6	2600,0	3 250,0	2 132,0
Tétrachlorobiphényles	537,2	509,6	884,0	520,0	988,0
Pentachlorobiphényles	380,8	1172,6	520,0	2 340,0	1 248,0
Hexachlorobiphényles	482,8	109,2	88,4	72,8	98,8
Heptachlorobiphényles	217,6	67,6	182,0	145,6	176,8
Octachlorobiphényles	122,4	192,4	161,2	447,2	421,2
Nonachlorobiphényles	34,0	57,2	ND	ND	1 144,0
Décachlorobiphényles	ND	31,2	ND	364,0	ND
Total ¹	2244,0	2492,4	4435,6	7139,6	6 240,0
		Récupération	n (%)		
13C-TRI-CB	66	74	51	47	48
13C-TETRA-CB	66	63	60	64	63
13C-PENTA-CB	118	91	88	98	91
13C-HEXA-CB	91	99	95	97	93
13С-НЕРТА-СВ	103	122	103	87	96
13C-OCTA-CB	120	114	100	100	94
13C-NONA-CB	148	115	100	98	94
13C-IUPAC nº 77		86	98	96	74
13C-IUPAC nº 126		92	108	102	96
13C-IUPAC nº 169		92	109	103	88
Récupération moyenne	102	95	91	89	84

Annexe 2b Concentrations des BPC selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales

ВРС	Mart i 1999-	inville 05-31	**	rairie -06-16		U Q .07-06
Congénères	Goulden	ECSOTE	Goulden	ECSOTE	Goulden	ECSOTE
	pg	g/1	p	g/l	pg	g/1
Trichlorobiphényles		_	_	_		
IUPAC nº 18	78,0	29,0	374,0	270,0	221,0	210,0
IUPAC nº 17	26,0	ND	123,0	82,0	23,0	110,0
IUPAC nº 31	110,0	27,3	199,0	155,6	251,0	251,6
IUPAC n° 28	99,0	33,1	169,0	141,6	235,0	228,2
IUPAC nº 33	87,0	14,2	12,0	21,5	175,0	120,0
Tétrachlorobiphényles						
IUPAC nº 52	115,0	20,6	130,0	103,0	330,0	407,5
IUPAC nº 49	76,0	8,1	84,0	63,0	199,0	250,0
IUPAC nº 44	69,0	15,2	89,0	61,2	220,0	254,2
IUPAC nº 74	15,0	2,4	23,1	14,5	145,0	97,9
IUPAC nº 70	58,0	10,4	41,0	33,8	412,0	283,9
Pentachlorobiphényles			1	T	1	
IUPAC nº 95	46,0	5,8	39,0	32,8	435,0	232,4
IUPAC nº 101	94,0	13,3	73,0	56,0	660,0	400,1
IUPAC nº 99	22,0	ND	23,0	17,1	237,0	160,0
IUPAC nº 87 IUPAC nº 110	26,0	6,2 13,0	25,0	24,0 25,2	216,0 319,0	180,0 225,3
IUPAC n° 110	44,0 ND	13,0 ND	40,0 5,1	25,2 4,7	319,0 44,0	225,3
IUPAC n° 118	17,0	8,2	32,0	21,0	230.0	170.0
IUPAC nº 105	8,2	5,0	13,0	10,0	80,0	74,0
Hexachlorobiphényles	0,2	3,0	13,0	10,0	00,0	74,0
IUPAC nº 151	17,0	3,0	6,8	4,9	99,0	55,0
IUPAC n° 149	55,0	27,0	19,0	28,0	306,0	195,0
IUPAC nº 153	59,0	0,0	28,4	36,0	262,0	200,0
IUPAC nº 132	15,0	3,9	7,0	ND	118,0	92,0
IUPAC nº 138	46,0	11,6	27,0	21,8	331,0	200,0
IUPAC nº 158	2,2	ND	3,0	ND	NDR	29,0
IUPAC nº 128	4,7	ND	ND	5,6	63,0	45,0
IUPAC nº 156	ND	ND	ND	ND	36,0	23,0
Heptachlorobiphényles						
IUPAC nº 187	14,0	17,0	ND	5,7	74,0	65,1
IUPAC nº 183	6,7	6,3	4,9	2,8	37,0	27,0
IUPAC nº 177	5,5	3,6	4,6	3,5	31,0	23,0
IUPAC n° 171	3,1	ND	ND	ND	17,0	ND
IUPAC nº 180	16,0	21,8	20,0	37,0	136,0	102,7
IUPAC nº 191	ND 5.1	ND	ND	ND 5.0	ND 50.0	ND 40.0
IUPAC nº 170	5,1	8,6	8,0	5,9	58,0	40,0
Octachlorobiphényles			1	T	1	
IUPAC nº 199	8,9	20,0	5,2	27,3	20,0	37,8
IUPAC nº 195	1,7	3,7	1,9	5,9	ND 21.0	13,0
IUPAC nº 194	4,4	22,1	2,9	31,0	21,0	28,2
IUPAC nº 205	ND	1,3	ND	1,5	ND	ND
Nonachlorobiphényles			1 -	T	1	1 1
IUPAC nº 208	1,5	5,2	1,5	5,5	ND	ND 24.0
IUPAC nº 206	6,2	31,1	2,3	16,8	ND	24,0
Décachlorobiphényles		T	<u> </u>	T -		T
IUPAC nº 209	1,9	ND	ND	3,5	12,0	16,7
Planaires			1		1	
IUPAC nº 77	4,5	ND	3,9	3,3	27,0	ND
IUPAC nº 126	ND	ND	ND	ND	ND	ND
IUPAC nº 169	ND	ND	ND	0,1	ND	ND
Total ¹	1 268,6	398,1	1 640,6	1 383,1	6 080,0	4 900,6

Annexe 2b Concentrations des BPC selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales (suite)

ВРС	Martinville 1999-05-31			rairie 06-16	CUQ 1999-07-06	
Groupes homologues	Goulden	ECSOTE	Goulden	ECSOTE	Goulden	ECSOTE
	pş	g/l	pş	g/l	pş	g/1
Trichorobiphényles	580,0	163,7	1 320,0	1 091,7	1 270,0	1 260,3
Tétrachlorobiphényles	586,0	99,9	590,0	501,5	2 640,0	2 350,5
Pentachlorobiphényles	284,0	55,6	275,0	177,1	2 580,0	1 682,9
Hexachlorobiphényles	219,0	45,6	108,4	123,9	1 390,0	965,0
Heptachlorobiphényles	74,1	64,6	51,0	63,2	436,0	319,8
Octachlorobiphényles	20,5	62,8	14,0	99,2	51,0	141,0
Nonachlorobiphényles	9,0	36,3	3,8	22,3	ND	24
Décachlorobiphényles	1,9	ND	ND	3,5	12,0	17,0
Total ¹	1 774,6	528,5	2 362,2	2 082,4	8 379,0	6 760,5
		Récup	ération (%)			
13C-TRI-CB	58 ^p ; 26 ^d	32	52 ^p ; 21 ^d	51	123 ^p ; 18 ^d	60
13C-TETRA-CB	85 ^p ; 39 ^d	39	69 ^p ; 27 ^d	68	156 ^p ; 25 ^d	66
13C-PENTA-CB	119 ^p ; 46 ^d	83	102 ^p ; 37 ^d	84	65 ^p ; 34 ^d	78
13C-HEXA-CB	135 ^p ; 53 ^d	57	122 ^p ; 43 ^d	86	56 ^p ; 38 ^d	80
13С-НЕРТА-СВ	112 ^p ; 52 ^d	72	99 ^p ; 38 ^d	92	63 ^p ; 38 ^d	79
13C-OCTA-CB	98 ^p ; 41 ^d	82	90°; 34 ^d	71	61 ^p ; 32 ^d	76
13C-NONA-CB	110 ^p ; 47 ^d	118	96 ^p ; 38 ^d	70	70°; 35 ^d	77
13C-IUPAC nº 77	102 ^p ; 60 ^d	63	95 ^p ; 34 ^d	76	97 ^p ; 50 ^d	83
13C-IUPAC nº 126	112 ^p ; 59 ^d	77	100 ^p ; 40 ^d	76	102 ^p ; 40 ^d	83
13C-IUPAC nº 169	114 ^p ; 58 ^d	71	90°; 34 ^d	76	94 ^p ; 41 ^d	101
Récupération moyenne	105 ^p ; 48 ^d	69	92 ^p ; 35 ^d	75	89 ^p ; 35 ^d	78

ND : non détecté DNQ : détecté non quantifié NDR : détecté, mais ne satisfait pas le rapport isotopique ^p : particulaire ^d : dissous ¹ Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Annexe 2b Concentrations des BPC selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales (suite)

ВРС	Farn 1999-			shire 07-12
Congénères	Goulden	ECSOTE	Goulden ¹	ECSOTE ²
	pg	/1	p	g/l
Trichorobiphényles	101.0	200.0	1.00.0	T
IUPAC nº 18	181,0	200,0	160,0	
IUPAC nº 17 IUPAC nº 31	DNQ 127,0	78,0 150,0	ND 140,0	
IUPAC n° 28	115,0	140,0	140,0	
IUPAC n° 33	42,0	42.0	75,0	
Tétrachlorobiphényles	42,0	42,0	73,0	<u> </u>
IUPAC n° 52	107.0	181.3	200.0	I
IUPAC n° 49	107,0 59,0	89,0	200,0 59,0	
IUPAC n° 44	73,0	86,5	72,0	
IUPAC n° 74	15,0	24,0	27,0	
UPAC n° 70	55,0	77,9	72,0	
Pentachlorobiphényles	33,0	11,2	72,0	<u> </u>
	01.0	140.0	190.0	T
IUPAC nº 95 IUPAC nº 101	91,0 163,0	140,0 270,0	180,0 110,0	
IUPAC n° 99	53,0	95,0	37,0	
IUPAC nº 87	64,0	120,0	60,0	
IUPAC nº 110	107,0	140.0	61,0	
IUPAC nº 82	ND	ND	ND	
IUPAC nº 118	78,0	100,0	40,0	
IUPAC nº 105	30,0	46,0	ND	
Hexachlorobiphényles		<u> </u>		
IUPAC n° 151	NDR	24,0	11,0	
UPAC nº 149	88,0	95,9	53,0	
IUPAC nº 153	80,0	110,0	35,0	
IUPAC nº 132	43,0	32,0	ND	
UPAC n° 138	97,0	110,0	32,0	
IUPAC nº 158	9,9	13,0	ND	
IUPAC nº 128	21,0	18,0	9,6	
IUPAC nº 156	NDR	ND	9,0	
Heptachlorobiphényles				
IUPAC nº 187	23,0	32,0	ND	
IUPAC nº 183	NDR	12,0	ND	
IUPAC nº 177	NDR	ND	ND	
IUPAC nº 171	6,1	ND	ND	
IUPAC nº 180	40,0	48,8	ND	
IUPAC nº 191	ND 12.0	ND	ND	
IUPAC nº 170	12,0	14,0	ND	
Octachlorobiphényles				ı
UPAC nº 199	18,0	40,0	ND	
TUPAC nº 195	DNQ	ND	ND	
IUPAC n° 194 IUPAC n° 205	16,0	23,5	ND	
	ND	ND	ND	
Nonachlorobiphényles	100	94.0		
IUPAC nº 208	10,0	26,0	ND	
IUPAC nº 206	57,0	92,0	ND	
Décachlorobiphényles				T
IUPAC nº 209	11,0	109,6	ND	
Planaires				
IUPAC nº 77	7,3	ND	24,6	35,0
IUPAC nº 126	ND	ND	2,1	ND
UPAC nº 169	ND	ND	ND	ND
	1 899,3	2 780,5	1 609,3	
Fotal ³	2 0 , , , ,)-		

Résultats pour la fraction dissoute seulement.

Dosage impossible : échantillon trop chargé en matière organique. Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Annexe 2b Concentrations des BPC selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales (suite)

ВРС		nham -07-12		kshire -07-12							
Groupes homologues	Goulden	ECSOTE	Goulden ¹	ECSOTE ²							
	p	g/l	р	g/l							
Trichorobiphényles	640,0	522,4	710,0								
Tétrachlorobiphényles	560,0	720,9	700,0								
Pentachlorobiphényles	622,0	377,9	640,0								
Hexachlorobiphényles	384,0	465,9	890,0								
Heptachlorobiphényles	94,0	121,8	780,0								
Octachlorobiphényles	34,0	154,9	12,0								
Nonachlorobiphényles	67,0	118,0	ND								
Décachlorobiphényles	11,0	0,0	ND								
Total ³	2 412,0	2 481,8	3 732,0								
	Récup	ération (%)									
13C-TRI-CB	63 ^p ; 27 ^d	26	27								
13C-TETRA-CB	96 ^p ; 41 ^d	45	37								
13C-PENTA-CB	81 ^p ; 60 ^d	46	37								
13C-HEXA-CB	78 ^p ; 70 ^d	58	43								
13С-НЕРТА-СВ	66 ^p ; 53 ^d	51	24								
13C-OCTA-CB	51 ^p ; 45 ^d	42	21								
13C-NONA-CB	66 ^p ; 51 ^d	48	24								
13C-IUPAC nº 77	85 ^p ; 70 ^d	67	100								
13C-IUPAC nº 126	93 ^p ; 66 ^d	68	96								
13C-IUPAC nº 169	82 ^p ; 71 ^d	70	120								
Récupération moyenne	76 ^p ; 55 ^d	52	53								
NDR: détecté, mais ne satisfa	it pas le rapport is	otopique ^p : par	ticulaire d: diss	ND: non détecté DNQ: détecté non quantifié NDR: détecté, mais ne satisfait pas le rapport isotopique p: particulaire d: dissous Résultats pour la fraction dissoute seulement.							

Résultats pour la fraction dissoute seulement.

Dosage impossible : échantillon trop chargé en matière organique.

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Annexe 3a Concentrations des BPC (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001

PDC.				
BPC Congénères	1999-05-13	1999-06-25	2000-12-01	2001-01-16
Trichlorobiphényles	1,,,, 00 10	1,,,, 00 20	2000 12 01	2001 01 10
IUPAC nº 18	ND	ND	214,2	196
IUPAC n° 17	ND	ND	DNO	36
IUPAC n° 31	ND	ND	ND	127
IUPAC n° 28	ND	ND	196,4	250
IUPAC n° 33	ND	ND	ND	127
Tétrachlorobiphényles				
IUPAC n° 52	130,0	135,2	157,1	303
IUPAC n° 49	ND	ND	NDR	107
IUPAC n° 44	78,0	ND	NDR	286
IUPAC nº 74	ND	ND	ND	ND
IUPAC nº 70	52,0	ND	58,9	123
Pentachlorobiphényles	, , ,	<u>-</u>		
IUPAC n° 95	ND	ND	94,6	250
IUPAC nº 101	114,4	ND	164,2	232
IUPAC n° 99	ND	ND	48,2	ND
IUPAC n° 87	ND	ND	NDR	107
IUPAC nº 110	ND	ND	53,6	173
IUPAC nº 82	ND	ND	ND	ND
IUPAC nº 118	52,0	ND	ND	ND
IUPAC nº 105	ND	ND	ND	ND
Hexachlorobiphényles				
IUPAC nº 151	ND	ND	DNQ	9
IUPAC nº 149	ND	ND	NDR	ND
IUPAC nº 153	ND	ND	NDR	57
IUPAC nº 132	ND	ND	ND	43
IUPAC nº 138	52,0	ND	DNQ	66
IUPAC nº 158	ND	ND	ND	ND
IUPAC nº 128	ND	ND	ND	ND
IUPAC nº 156	ND	ND	ND	ND
Heptachlorobiphényles				
IUPAC nº 187	ND	ND	ND	ND
IUPAC nº 183	ND	ND	ND	ND
IUPAC n° 177	ND	ND	ND	ND
IUPAC nº 171	ND	ND	ND	ND
IUPAC nº 180	ND	ND	112,5	104
IUPAC nº 191	ND	ND	ND	ND
IUPAC nº 170	ND	ND -	ND	ND
Octachlorobiphényles		T		
IUPAC nº 199	ND	ND	ND	41
IUPAC nº 195	ND	ND	ND	ND
IUPAC nº 194	ND	ND	92,8	75 NB
IUPAC nº 205	ND	ND	ND	ND
Nonachlorobiphényles				
IUPAC nº 208	ND	26,0	ND	11
IUPAC nº 206	ND	ND	ND	ND
Décachlorobiphényles				
IUPAC n° 209	ND	452,4	16,1	ND
Planaires				
IUPAC n° 77		ND	DNQ	2
IUPAC nº 126		ND	ND	ND
IUPAC nº 169		ND	NDR	ND
Total ¹	478,4	613,6	1 208,4	2 724,0
ND : non détecté DNO : déte		,	,	, , , , , , , , , , , , , , , , , , , ,

Annexe 3a Concentrations des BPC (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001 (suite)

BPC				
Groupes homologues	1999-05-13	1999-06-25	2000-12-01	2001-01-16
Trichorobiphényles	ND	ND	999,6	821
Tétrachlorobiphényles	260,0	135,2	339,2	1 196
Pentachlorobiphényles	166,4	780,0	785,4	893
Hexachlorobiphényles	52,0	ND	ND	232
Heptachlorobiphényles	ND	ND	112,5	104
Octachlorobiphényles	ND	ND	92,8	116
Nonachlorobiphényles	ND	26,0	446,3	57
Décachlorobiphényles	ND	452,4	125,0	4
Total ¹	478,4	1 393,6	2 900,6	3 392,0
	Réc	cupération (%)		
13C-TRI-CB	71	52	37	53
13C-TETRA-CB	71	68	58	28
13C-PENTA-CB	119	96	76	53
13C-HEXA-CB	94	93	93	51
13C-HEPTA-CB	115	105	73	40
13C-OCTA-CB	118	107	71	87
13C-NONA-CB	160	76	63	39
13C-IUPAC nº 77		85	82	79
13C-IUPAC nº 126		90	83	85
13C-IUPAC nº 169		84	89	103
Récupération moyenne	107	86	73	62

Annexe 3b Concentrations des BPC selon les méthodes Goulden et ECSOTE dans les échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001

	1999-	-05-25	1999	-06-28	2000-	-12-04	2001-	-01-22
BPC	Goulden	ECSOTE	Goulden	ECSOTE	Goulden	ECSOTE	Goulden	ECSOTE
Congénères	p	g/l	p	g/l	p	g/l	p.	g/l
Trichlorobiphényles								
IUPAC nº 18	42,0	27,0	24,0	ND	29,0	7,0	23,0	13,0
IUPAC nº 17	20,0	9,7	ND	ND	11,0	7,5	DNO	7,1
IUPAC n° 31	36,0	23,0	32,0	ND	20,0	16,0	20,0	11,9
IUPAC n° 28	28,0	39,0	23,0	33,0	11,0	8,0	12,0	2,0
IUPAC n° 33	24,0	16,0	24,0	ND	9,2	10,0	12,0	1,2
Tétrachlorobiphényles				_	<u> </u>			
IUPAC n° 52	57,0	56,7	32,0	39,4	32,0	54,2	37,0	35,0
IUPAC nº 49	33,0	30,0	22,0	20,0	15,0	23,0	17,0	16,0
IUPAC n° 44	33,0	27,6	32,0	23,0	12,0	21,0	13,0	1,0
IUPAC nº 74	8,8	6,0	ND	ND	DNO	4,8	4,5	3,9
IUPAC nº 70	21,0	15,1	20,2	21,0	8,0	10,7	10,0	7,1
Pentachlorobiphényles								7,7
	22.0	22.0	22.9	27.0	21.0	20.7	10.0	17.0
IUPAC nº 95 IUPAC nº 101	33,0 42,0	23,0 32,6	23,8 38,0	27,0 47,0	21,0 31,0	30,7 34,8	19,0 25,0	17,0 23,0
IUPAC n° 99	17,0	15,0	9,1	ND	13,0	12,3	9,3	13,0
IUPAC n° 87	17,0	15,0	ND	21,0	8,1	16,0	9,3	6,0
IUPAC nº 110	25,0	22,0	30,0	29,0	12,0	15,0	11,0	6,3
IUPAC n° 82	3,5	ND	ND	ND	ND	3,1	DNO	ND
IUPAC nº 118	17,0	ND	21,6	21,0	9,0	12,0	7,9	9,7
IUPAC n° 105	8,4	7,5	ND	11,0	4,6	5,5	3,4	2,3
	0,4	7,5	ND	11,0	7,0	3,3	3,4	2,3
Hexachlorobiphényles	6.7	C 4	MD	7.0	1.0	4.1	2.0	2.0
IUPAC n° 151 IUPAC n° 149	6,7	6,4 37,0	ND 16,8	7,0 23,0	4,0 9,0	4,1 17,0	3,9 11,0	3,9 18,0
IUPAC n° 153	25,0	28,0	25,0	27,0	11,0	15,0	7,9	10,8
IUPAC nº 132	12,0	9,8	10,4	ND	3,1	6,6	2,9	ND
IUPAC nº 138	32,0	32,1	17,0	26,0	12,0	17,0	11,0	10,3
IUPAC n° 158	2,7	2,1	1,7	4,0	ND	1,2	1,0	0,8
IUPAC nº 128	6,4	ND	7,3	7,0	2,0	2,9	2,8	ND
IUPAC n° 156	ND	2,5	1.7	ND	ND	ND	ND	ND
Heptachlorobiphényles	TIE	2,5	1,7	TIE	112	TIE	TIE	TIE
_	E 4	12.0	4.2	11.0	2.6	NDD	NDD	2.4
IUPAC nº 187	5,4	12,0	4,2	11,0	3,6	NDR	NDR	3,4
IUPAC nº 183	3,3	ND	ND	5,0	1,8	ND	ND	ND
IUPAC nº 177 IUPAC nº 171	3,4	ND 3,2	ND ND	ND ND	ND ND	0,0	1,1 ND	ND ND
IUPAC n° 171	10,0	29,0	9,5	18,0	5,2	0,0 7,7	3,3	6,2
IUPAC nº 191	ND	29,0 ND	ND	ND	ND	ND	ND	ND
IUPAC n° 170	7.1	ND ND	3.5	ND	ND ND	4,1	NDR	ND ND
	/,1	140	3,3	140	1410	7,1	1101	140
Octachlorobiphényles	NID	0.0	NTD	0.0	ND	MDD	MDD	1 1
IUPAC nº 199	ND 2.2	8,9	ND ND	9,0	ND	NDR	NDR	1,1
IUPAC nº 195	2,3	2,4	ND ND	ND 15.0	ND ND	1,3	DNQ	ND 1.0
IUPAC n° 194 IUPAC n° 205	4,2 ND	9,0 ND	ND ND	15,0 ND	ND ND	1,6 ND	0,9 ND	1,0 ND
	עא	ND	עא	ND	ND	ND	עא	עא
Nonachlorobiphényles			4 .					
IUPAC nº 208	ND	ND	1,4	2,5	ND	NDR	ND	0,7
IUPAC nº 206	2,2	9,0	ND	13,0	DNQ	NDR	NDR	1,4
Décachlorobiphényles							1	
IUPAC nº 209	2,4	3,1	ND	0,0	ND	4,0	ND	ND
Planaires								
IUPAC nº 77			1,8	1,1	0,3	ND	NDR	0,3
IUPAC nº 126	1		ND	ND	0,1	ND	ND	ND
IUPAC nº 169	ND	ND	ND	ND	0,1	0,1	ND	ND
Total ¹	616,7	559,7	432,0	461,1	298,1	374,2	279,5	233,4
	étecté non quar		détecté mai		, ,		217,0	200,1

Annexe 3b Concentrations des BPC selon les méthodes Goulden et ECSOTE dans les échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001 (suite)

BPC	1999-	05-25	1999-	06-28	2000-	12-04	2001-	01-22
Groupes homologues	Goulden	ECSOTE	Goulden	ECSOTE	Goulden	ECSOTE	Goulden	ECSOTE
	pg	g/l	pg	g/l	pg/l		pg/l	
Trichorobiphényles	200,0	140,0	88,0	33,0	100,0	54,0	110,0	54,0
Tétrachlorobiphényles	280,0	225,4	513,0	172,4	140,0	201,0	140,0	163,0
Pentachlorobiphényles	190,0	120,7	123,0	236,3	100,0	136,0	92,0	90,0
Hexachlorobiphényles	120,0	137,1	83,0	100,0	41,0	69,0	46,0	46,0
Heptachlorobiphényles	37,0	44,0	17,4	41,0	11,0	11,7	4,4	9,2
Octachlorobiphényles	8,3	23,0	2,6	28,0	ND	2,9	0,9	2,1
Nonachlorobiphényles	2,2	18,0	1,4	148,5	ND	0,0	ND	2,6
Décachlorobiphényles	2,4	3,1	ND	74,7	ND	0,0	ND	ND
Total ¹	839,9	711,3	828,4	833,9	392,0	474,6	393,3	367,0
			Récupération	on (%)				
13C-TRI-CB	71	71	25 ^p ; 41 ^d	56	54	55	58	56
13C-TETRA-CB	72	64	30 ^p ; 34 ^d	63	82	75	93	98
13C-PENTA-CB	100	109	59 ^p ; 52 ^d	80	76	98	93	95
13C-HEXA-CB	70	74	65 ^p ; 47 ^d	74	100	108	80	90
13C-HEPTA-CB	93	97	69 ^p ; 73 ^d	77	75	86	111	87
13C-OCTA-CB	82	83	76 ^p ; 58 ^d	74	76	88	112	105
13C-NONA-CB	92	95	74 ^p ; 56 ^d	79	75	81	111	106
13C-IUPAC nº 77			99 ^p ; 80 ^d	73	90	92	74	69
13C-IUPAC nº 126			96 ^p ; 71 ^d	83	85	84	78	74
13C-IUPAC n° 169			104 ^p ; 68 ^d	74	89	95	92	93
Récupération moyenne	83	85	70 ^p ; 58 ^d	73	80	86	90	87

ND : non détecté DNQ : détecté non quantifié NDR : détecté, mais ne satisfait pas le rappor

p : particulaire d : dissous

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro). NDR : détecté, mais ne satisfait pas le rapport isotopique

Annexe 4a Concentrations des HAP (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eaux usées prélevés aux stations d'épuration municipales

HAP	Martinville	La Prairie	CUQ	Farnham	Cookshire
HAP (groupe 1)	1999-05-13	1999-06-10	1999-07-05	1999-07-09	1999-07-13
Benzo[a]anthracène	ND	ND	ND	ND	ND
Chrysène	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo[b]fluoranthène	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo[j+k]fluoranthène	ND ND	ND ND	ND	ND	ND
Benzo[a]pyrène	ND ND	ND ND	ND ND	ND	ND ND
Indéno[1,2,3-c,d]pyrène	ND	ND	ND	ND	ND
Dibenzo[ac]+[ah]anthracène	ND	ND	ND	ND	ND
5-méthylchrysène	ND	ND	ND	ND	ND
Dibenzo[a,h]acridine	ND	ND	ND	ND	ND
Dibenzo[a,j]acridine	ND	ND	ND	ND	ND
7H-Dibenzo[c,g]carbazole	ND	ND	ND	ND	ND
Dibenzo[a,l]pyrène	ND	ND	ND	ND	ND
Dibenzo[a,e]pyrène	ND	ND	ND	ND	ND
Dibenzo[a,i]pyrène	ND	ND	ND	ND	ND
Dibenzo[a,h]pyrène	ND	ND	ND	ND	ND
HAP (groupe 1)	0,0	0,0	0,0	0,0	0,0
HAP (groupe 2 et autres)	0,0	0,0	0,0	0,0	1 0,0
	ND	ND	NID	MD	NID
Acénaphtène	ND	ND ND	ND ND	ND	ND ND
Acénaphthylène	ND	ND	ND ND	ND	ND ND
Anthracène	ND	ND	ND	ND	ND ND
Benzo(g,h,i)pérylène	ND	ND	ND	ND	ND
Benzo(e)pyrène	ND	ND	ND	ND	ND 6 240.0
Fluoranthène	ND ND	3 432,0	4 576,0 ND	ND ND	
Fluorène		ND	1 092 000.0		ND
Naphtalène	306 000,0	520 000,0	,.	43 160,0	78 000,0
Pérylène Phénanthrène	ND 8 840,0	ND	ND	ND	ND
Pyrène	1 836,0	8 840,0 4 108,0	9 880,0 21 320,0	7 800,0 4 472,0	16 120,0 33 800,0
1-Méthylnaphtalène	ND	19 240,0	22 880,0	7 280,0	18 200,0
2-Méthylnaphtalène	8 160,0	27 560,0	21 320,0	10 400,0	13 000,0
1,3-Diméthylnaphtalène	ND	8 840,0	ND	ND	4 160,0
2-Chloronaphtalène	ND	ND	ND	ND	ND
1-Chloronaphtalène	ND	ND	ND	ND	ND
2,3,5-Triméthylnaphtalène	ND	ND	ND	ND	ND
Carbazole	ND	ND	ND	ND	ND
2-Méthylfluoranthène	ND	ND	ND	ND	ND
Benzo[c]phénanthrène	ND	ND	ND	ND	ND
Benzo[c]acridine	ND	ND	ND	ND	ND
Cyclopenta[c,d]pyrène	ND	ND	ND	ND	ND
2-Méthylchrysène	ND	ND	ND	ND	ND
3-Méthylchrysène	ND	ND	ND	ND	ND
4+6-Méthylchrysène	ND	ND	ND	ND	ND
1-Nitropyrène	ND	ND	ND	ND	ND
7,12-Diméthylbenzo[a]anthracène	ND	ND	ND	ND	ND
3-Méthylcholanthrène	ND	ND	ND	ND	ND
Dibenzo[a,j]anthracène	ND	ND	ND	ND	ND
Anthanthrène	ND	ND	ND	ND	ND
Dibenzo[a,e]fluoranthène	ND	ND	ND	ND	ND
Coronène	ND	ND	ND	ND	ND
HAP totaux ¹	326 944,0	592 020,0	1 171 976,0	73 112,0	169 520,0
		Récupération (%	(6)		
Acénaphtène-D10	67	61	64	65	61
Anthracène-D10	56	84	77	68	50
Pyrène-D10	80	100	84	65	74
Chrysène-D12	102	89	95	96	83
Benzo(a)pyrène-D12	63	98	95	73	42
Dibenzo(a,h)anthracène-D12	90	102	96	74	85
Récupération moyenne	76	89	85	74	66
The state of the s					

Annexe 4b Concentrations des HAP selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales

НАР		inville -05-31		rairie -06-16		U Q -07-06
IIAI	Goulden	ECSOTE	Goulden	ECSOTE	Goulden	ECSOTE
HAP (groupe 1)		g/l		g/l		g/l
Benzo[a]anthracène	0,69	ND	1,60	1,20	DNQ	3,70
Chrysène	DNQ	ND	2,10	2,00	9,00	8,10
Benzo[b]fluoranthène	ND	ND	2,10	1,20	6,40	4,60
Benzo[j+k]fluoranthène	ND		2,20	1,80	4,30	2,50
Benzo[a]pyrène	0,50	ND	1,90	1,40	DNQ	2,30
Indéno[1,2,3-c,d]pyrène	ND	ND	1,20	0,87	0,99	1,30
Dibenzo[ac]+[ah]anthracène	ND	ND	0,40	0,26	0,51	0,51
5-méthylchrysène	ND	ND	ND	ND	ND	ND
Dibenzo[a,h]acridine	ND	ND	ND	ND	ND	ND
Dibenzo[a,j]acridine	ND	ND	ND	ND	ND	ND
7H-Dibenzo[c,g]carbazole	ND	ND	ND 0.76	ND	ND	ND
Dibenzo[a,l]pyrène	ND	ND	0,76	ND	DNQ	ND 0.42
Dibenzo[a,e]pyrène	ND	ND ND	0,23	ND ND	DNQ	0,43
Dibenzo[a,i]pyrène Dibenzo[a,h]pyrène	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
			12,49			1
Sous total (groupe 1)	1,19	0,00	12,49	8,73	21,20	23,44
HAP (groupe 2 et autres)	P.V.C	1 175	1	1		2.50
Acénaphtène	DNQ	ND	ND	ND	9,20	3,70
Acénaphthylène	1,20	ND	ND	ND	DNQ	ND
Anthracène	DNQ	ND	0,62	ND	DNQ	ND
Benzo(g,h,i)pérylène	ND 0.50	ND	1,70	1,60	2,60	2,00
Benzo(e)pyrène Fluoranthène ¹	0,50	ND	2,00	1,70	3,30	3,90
Fluorantnene	6,20 2,70	ND 3,40	7,60 6,50	4,91 2,40	18,80 19,40	10,74 12,00
Naphtalène ¹	44,00	10,86	19,80	0,00	102,30	0,00
Pérylène	0,50	ND	DNQ	0,96	ND	ND
Phénanthrène ¹	19,50	6,41	15,50	5,11	50,00	10,45
Pyrène1	3,40	3,00	14,00	13,77	25,00	22,81
1-Méthylnaphtalène ¹	21,00	24,00	2,90	1,82	71,88	21,72
2-Méthylnaphtalène ¹	47,00	44,54	3,90	1,96	111,70	19,81
1,3-Diméthylnaphtalène	6,70	7,70	3,60	ND	71,40	30,00
2-Chloronaphtalène	ND	ND	ND	ND	ND	0,19
1-Chloronaphtalène	ND	ND	ND	0,61	ND	0,20
2,3,5-Triméthylnaphtalène	0,97	ND	1,70	2,10	17,75	14,00
Carbazole	3,40	ND	9,53	2,80	20,79	11,00
2-Méthylfluoranthène	ND	ND	DNQ	ND	DNQ	3,90
Benzo[c]phénanthrène	ND	ND	DNQ	ND	ND	ND
Benzo[c]acridine	ND	ND	0,16	ND	DNQ	0,80
Cyclopenta[c,d]pyrène	ND	ND	ND	ND	ND 1.71	ND
2-Méthylchrysène	ND ND	ND ND	0,21	ND 0.58	1,71	1,70
3-Méthylchrysène 4+6-Méthylchrysène	ND ND	ND ND	0,57	0,58	4,03	3,80
1-Nitropyrène	ND ND	ND ND	ND ND	ND ND	0,64 ND	0,62 ND
7,12-Diméthylbenzo[a]anthracène	0,90	ND ND	ND ND	ND ND	ND	ND ND
3-Méthylcholanthrène	ND	ND ND	ND ND	ND	ND	ND ND
Dibenzo[a,j]anthracène	ND	ND	0,24	0,14	DNQ	ND
Anthanthrène	ND	ND	ND	ND	ND	ND
Dibenzo[a,e]fluoranthène	ND	ND	0,40	ND	DNQ	ND
Coronène	ND	ND	0,43	ND	0,70	0,83
HAP totaux ²	18,06	11,10	40,15	21,62	172,72	112,08
			ation (%)		,	
Acénaphtène-D10	83°; 61 ^d	60	70°; 70 ^d	66	57 ^p ; 57 ^d	84
Anthracène-D10	85°; 70 ^d	69	84 ^p ; 72 ^d	76	86 ^p ; 52 ^d	83
Pyrène-D10	94 ^p ; 62 ^d	76	104 ^p ; 61 ^d	86	93 ^p ; 49 ^d	80
Chrysène-D12	162 ^p ; 77 ^d	88	102 ^p ; 70 ^d	82	102 ^p ; 44 ^d	74
Benzo(a)pyrène-D12	107 ^p ; 49 ^d	66	84 ^p ; 47 ^d	66	103 ^p ; 32 ^d	68
Dibenzo(a,h)anthracène-D12	107 ^p ; 34 ^d	65	108 ^p ; 30 ^d	66	120 ^p ; 21 ^d	98
Récupération moyenne	106 ^p ;59 ^d	71	92 ^p ;58 ^d	74	94 ^p ;43 ^d	81

ND: non détecté DNQ: détecté non quantifié NDR: détecté, mais ne satisfait pas le rapport isotopique p: particulaire d: dissous Les teneurs de ces composés ne sont pas incluses dans la somme des HAP totaux.

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Annexe 4b Concentrations des HAP selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales (suite)

НАР		Farnham 999-07-12			Cooks	
IIAI	Goulden		SOTE	Goule		ECSOTE
HAP (groupe 1)		ng/l	0012	3041	ng	
Benzo[a]anthracène	0,80		,80	NI		ND
Chrysène	1,80		3,50	DN		ND
Benzo[b]fluoranthène	2,20		5,00	Div	×	TVD
Benzo[j+k]fluoranthène	1,70		3,70			
Benzo[a]pyrène	1,20		2,20	NI)	ND
Indéno[1,2,3-c,d]pyrène	0,93		.80	DN		DNO
Dibenzo[ac]+[ah]anthracène	0,22	(),52	NI)	ND
5-méthylchrysène	ND]	ND	NI)	ND
Dibenzo[a,h]acridine	ND]	ND	NI)	ND
Dibenzo[a,j]acridine	ND]	ND			
7H-Dibenzo[c,g]carbazole	ND]	ND	NI)	ND
Dibenzo[a,l]pyrène	0,46),78	NI)	ND
Dibenzo[a,e]pyrène	0,15),23	NI		ND
Dibenzo[a,i]pyrène	ND		ND	NI		ND
Dibenzo[a,h]pyrène	ND		ND	NI)	ND
Sous total (groupe 1)	9,46	1	9,53	0,0	0	0,00
HAP (groupe 2 et autres)						
Acénaphtène	DNQ]	ND	DN	Q	23,00
Acénaphthylène	ND]	ND	NI)	ND
Anthracène	DNQ]	ND	NI)	ND
Benzo(g,h,i)pérylène	1,20	2	2,30	4,5	0	10,00
Benzo(e)pyrène	1,60	3	3,20	DN	Q	ND
Fluoranthène ¹	5,47		5,00	10,3		DNQ
Fluorène	1,30		,00	DN	_	ND
Naphtalène ¹	10,00		3,50	4,7		14,63
Pérylène	0,36),72	NI		ND
Phénanthrène ¹	13,70		3,46	14,0		ND
Pyrène	9,90		9,75	36,0		40,11
1-Méthylnaphtalène ¹	2,90		1,09			2,48
2-Méthylnaphtalène ¹	5,20		,82	1,1		0,27
1,3-Diméthylnaphtalène	3,00		,20	DN	`	DNQ
2-Chloronaphtalène 1-Chloronaphtalène	ND ND		ND ND	NI NI		20,00 4,20
2,3,5-Triméthylnaphtalène	DNQ		ND ND	DN		4,20 ND
Carbazole	1,64),86	0,6	_	ND ND
2-Méthylfluoranthène	0,24		ND	NI		ND
Benzo[c]phénanthrène	DNO		ND	NI		ND
Benzo[c]acridine	0,10),36	NI		ND
Cyclopenta[c,d]pyrène	ND		ND	NI		ND
2-Méthylchrysène	0,26),47	DN		DNQ
3-Méthylchrysène	0,55		,10	10,8		15,00
4+6-Méthylchrysène	0,09		ND	NI		ND
1-Nitropyrène	ND		ND	NI		ND
7,12-Diméthylbenzo[a]anthracène	ND]	ND	NI)	ND
3-Méthylcholanthrène	ND]	ND	NI)	ND
Dibenzo[a,j]anthracène	0,13	(),24	NI)	ND
Anthanthrène	ND		ND	NI		ND
Dibenzo[a,e]fluoranthène	0,24),52	NI		ND
Coronène	0,43),57	3,7		ND
HAP totaux ²	20,60		2,07	19,6	66	72,20
		upération (%)				
Acénaphtène-D10	61 ^p ; 67 ^d	66	90°; 7			83
Anthracène-D10	89 ^p ; 72 ^d	70	95 ^p ; 6			84
Pyrène-D10	99 ^p ; 72 ^d	78	105 ^p ; 6			102
Chrysène-D12	101 ^p ; 69 ^d	71	100 ^p ; 4	13 ^a		74
Benzo(a)pyrène-D12	87 ^p ; 61 ^d	53	99 ^p ; 3			73
Dibenzo(a,h)anthracène-D12	96 ^p ; 42 ^d	58	109 ^p ; 3			76
Récupération moyenne	89 ^p ;64 ^d	66	100 ^p ;5	3 ^d 82		82

ND: non détecté DNQ: détecté non quantifié
NDR: détecté, mais ne satisfait pas le rapport isotopique

p: particulaire d: dissous
Les teneurs de ces composés ne sont pas incluses dans la somme des HAP totaux.

Annexe 5a Concentrations des HAP (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001

HAP					
HAP (groupe 1)	1999-05-13	1999-06-17	1999-06-25	2000-12-01	2001-01-16
Benzo[a]anthracène	ND	ND	ND	DNO	ND
Chrysène	ND	ND	ND	DNO	ND
Benzo[b]fluoranthène	ND	ND	ND	ND	ND
Benzo[j+k]fluoranthène	ND	ND	ND	ND	ND
Benzo[a]pyrène	ND	ND	ND	ND	ND
Indéno[1,2,3-c,d]pyrène	ND	ND	ND	ND	ND
Dibenzo[ac]+[ah]anthracène	ND	ND	ND	ND	ND
5-méthylchrysène	ND	ND	ND	ND	ND
Dibenzo[a,h]acridine	ND	ND	ND	ND	ND
Dibenzo[a,j]acridine	ND	ND	ND	ND	ND
7H-Dibenzo[c,g]carbazole	ND	ND	ND	ND	ND
Dibenzo[a,l]pyrène	ND	ND	ND	ND	ND
Dibenzo[a,e]pyrène	ND	ND	ND	ND	ND
Dibenzo[a,i]pyrène	ND	ND	ND	ND	ND
Dibenzo[a,h]pyrène	ND	ND	ND	ND	ND
HAP (groupe 1)	0,0	0,0	0,0	0,0	0,0
HAP (groupe 2 et autres)					
Acénaphtène	ND	ND	ND	ND	ND
Acénaphthylène	ND	ND	ND	7 140,0	DNQ
Anthracène	ND	ND	ND	ND	ND
Benzo(g,h,i)pérylène	ND	ND	ND	ND	ND
Benzo(e)pyrène	ND	ND	ND	ND	ND
Fluoranthène	3 224,0	5 200,0	3 744,0	4 998,0	5 533,5
Fluorène	ND	ND	ND	7 318,5	5 533,5
Naphtalène	93 600,0	124 800,0	114 400,0	37 485,0	49 980,0
Pérylène	ND	ND	ND	ND	ND
Phénanthrène	8 320,0	10 920,0	7 800,0	11 245,5	12 852,0
Pyrène	8 840,0	15 600,0	12 480,0	30 345,0	16 957,5
1-Méthylnaphtalène	6 760,0	9 880,0	6 760,0	10 353,0	16 600,5
2-Méthylnaphtalène	11 440,0	16 640,0	10 400,0	16 422,0	28 560,0
1,3-Diméthylnaphtalène	ND	ND	ND	15 172,5	14 101,5
2-Chloronaphtalène	ND	ND	ND	ND	ND
1-Chloronaphtalène	ND	ND	ND	ND	ND
2,3,5-Triméthylnaphtalène	ND	ND	ND	7 675,5	DNQ
Carbazole	ND	ND	ND	ND	ND
2-Méthylfluoranthène	ND	ND	ND	ND	ND
Benzo[c]phénanthrène	ND	ND	ND	ND	ND
Benzo[c]acridine	ND	ND	ND	ND	ND
Cyclopenta[c,d]pyrène	ND	ND ND	ND ND	ND ND	ND ND
2-Méthylchrysène 3-Méthylchrysène	ND ND	ND ND	ND ND	ND ND	ND ND
4+6-Méthylchrysène	ND ND	ND ND	ND ND	ND ND	ND ND
1-Nitropyrène	ND ND	ND ND	ND ND	ND ND	ND ND
7,12-Diméthylbenzo[a]anthracène	ND ND	ND ND	ND ND	ND ND	ND ND
3-Méthylcholanthrène	ND	ND ND	ND	ND	ND ND
Dibenzo[a,j]anthracène	ND	ND	ND	ND	ND
Anthanthrène	ND	ND	ND	ND	ND
Dibenzo[a,e]fluoranthène	ND	ND	ND	ND	ND
Coronène	ND	ND	ND	ND	ND
HAP totaux ¹	132 184,0	183 040,0	155 584,0	148 155,0	150 118,5
		Récupération (%	·		
Acénaphtène-D10	57	73	72	71	77
Anthracène-D10	85	78	80	79	79
Pyrène-D10	85	90	96	83	79
Chrysène-D12	87	92	98	83	102
Benzo(a)pyrène-D12	91	88	88	83	97
Dibenzo(a,h)anthracène-D12	81	89	111	90	104
Récupération moyenne	81	85	91	82	90

Annexe 5b Concentrations des HAP selon les méthodes Goulden et ECSOTE dans les échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001

	1999-	05-25	1999-	-06-21	1999-	06-28
HAP	Goulden	ECSOTE	Goulden	ECSOTE	Goulden	ECSOTE
HAP (groupe 1)	ng	2/1	n	g/l	ng	2/1
Benzo[a]anthracène	1,10	0,97	0,27	ND	0,40	0,59
Chrysène	3,70	3,50	0,56	0,65	0,99	0,54
Benzo[b]fluoranthène	4,50	3,60	0,52	0,41	0,81	2,40
Benzo[j+k]fluoranthène	3,10	2,20	0,39	0,31	0,65	1,50
Benzo[a]pyrène	1,90	1,70	0,31	0,25	0,49	0,96
Indéno[1,2,3-c,d]pyrène	1,60	1,40	0,30	0,19	0,50	0,75
Dibenzo[ac]+[ah]anthracène	0,34	0,30	0,07	ND	0,13	0,18
5-méthylchrysène	0,43	ND	ND	ND	ND	0,43
Dibenzo[a,h]acridine		ND	ND	ND	ND	ND
Dibenzo[a,j]acridine	0,18	ND	ND	ND	ND	ND
7H-Dibenzo[c,g]carbazole	ND	ND	ND	ND	ND	ND
Dibenzo[a,l]pyrène	0,70	0,71	ND	ND	ND	ND
Dibenzo[a,e]pyrène	0,21	0,17	0,04	ND	0,07	0,10
Dibenzo[a,i]pyrène	ND	ND	ND	ND	ND	ND
Dibenzo[a,h]pyrène	ND	ND	ND	ND	ND	ND
Sous total (groupe 1)	17,76	14,55	2,46	1,81	4,04	7,45
HAP (groupe 2 et autres)	27,70	1.,00		1,01	-,	.,
Acénaphtène	ND	ND	ND	ND	ND	ND
Acénaphthylène	ND ND	ND ND	1,80	ND ND	ND ND	ND ND
Anthracène	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)pérylène	3,40	2,80	1,30	1,30	0,80	1,10
Benzo(e)pyrène	2,80	2,40	0,46	0,48	0,69	1,30
Fluoranthène ¹	8,50	6,52	4,65	0,76	3,80	3,09
Fluorène	0,98	0,97	2,70	ND	ND	ND
Naphtalène ¹	ND	0,00	5,30	0,00	3,50	0,00
Pérylène	1,70	1,30	0,71	0,55	1,10	1,50
Phénanthrène ¹	6,10	2,73	6,20	0,00	4,40	1,26
Pyrène	11,00	23,51	7,50	9,97	4,70	3,20
1-Méthylnaphtalène ¹	1,20	0,62	15,00	0,00	2,40	0,00
2-Méthylnaphtalène ¹	1,40	0,86	20,00	0,00	3,40	1,42
1,3-Diméthylnaphtalène	2,30	1,10	5,90	1,30	1,40	0,85
2-Chloronaphtalène	ND	ND	ND	ND	ND	ND
1-Chloronaphtalène	ND	0,10	ND	ND	ND	0,07
2,3,5-Triméthylnaphtalène	2,40	0,86	0,59	0,49	1,20	0,91
Carbazole	1,80	1,50	1,72	ND	1,63	1,40
2-Méthylfluoranthène	0,42	0,37	ND	ND	ND	0,26
Benzo[c]phénanthrène	0,32	0,27	ND	ND	ND	ND
Benzo[c]acridine	0,20	0,35	ND	ND	ND	0,26
Cyclopenta[c,d]pyrène	ND	ND	ND	ND	ND	0,43
2-Méthylchrysène	ND	0,27	ND	ND	0,15	0,23
3-Méthylchrysène	ND	0,54	0,16	ND	0,31	0,54
4+6-Méthylchrysène	0,20	ND	ND	ND	ND	ND
1-Nitropyrène	ND	ND	ND	ND	ND	ND
7,12-Diméthylbenzo[a]anthracène	ND	ND	ND	ND	ND	ND
3-Méthylcholanthrène	ND	ND	ND	ND	ND	ND
Dibenzo[a,j]anthracène		0,19	0,04	ND	0,09	0,12
Anthanthrène	ND	ND	ND	ND	ND	ND
Dibenzo[a,e]fluoranthène	0,46	0,42	ND	ND	ND	ND
Coronène	0,94	1,10	0,43	0,48	0,31	0,54
HAP totaux ²	35,68	29,09	18,26	6,41	11,72	16,96
		Récupér	ation (%)			
Acénaphtène-D10	70	66	60°; 57 ^d	56	53 ^p ; 61 ^d	56
Anthracène-D10	83	90	71 ^p ; 77 ^d	74	69 ^p ; 74 ^d	67
Pyrène-D10	84	100	90°; 65 ^d	81	80°; 85 ^d	83
- J	68	82	74 ^p ; 57 ^d	68	72 ^p ; 68 ^d	76
Chrysène-D12	00					
Chrysène-D12 Benzo(a)pyrène-D12	76	85	82 ^p ; 72 ^d	66	77 ^p ; 73 ^d	66
- v				66 71	77 ^p ; 73 ^d 80 ^p ; 61 ^d	66 82

ND : non détecté DNQ : détecté non quantifié NDR : détecté, mais ne satisfait pas le rapport isotopique p: particulaire d: dissous Les teneurs de ces composés ne sont pas incluses dans la somme des HAP totaux.

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Annexe 5b Concentrations des HAP selon les méthodes Goulden et ECSOTE dans les échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001 (suite)

	2000	12.04	2001	01 22
НАР	Goulden 2000-	ECSOTE	Goulden 2001-	-01-22 ECSOTE
HAP (groupe 1)		g/l 0.25		g/l
Benzo[a]anthracène	0,43	0,35 1,20	0,22	0,15
Chrysène Benzo[b]fluoranthène	1,30	1,20	0,46	0,31 0,44
Benzo[j+k]fluoranthène		0,87		0,27
Benzo[]+k]Huorantnene Benzo[a]pyrène	0,54	0,50	DNQ	DNQ
Indéno[1,2,3-c,d]pyrène	0.48	0,48	DNQ	0,11
Dibenzo[ac]+[ah]anthracène	DNQ	0,48	DNQ	0,06
5-méthylchrysène	ND	ND	ND	ND
Dibenzo[a,h]acridine	ND	ND	ND	ND
Dibenzo[a,j]acridine	ND	ND	ND	ND
7H-Dibenzo[c,g]carbazole	ND	ND	ND	ND
Dibenzo[a,l]pyrène	ND	ND	ND	ND
Dibenzo[a,e]pyrène	ND	ND	ND	ND
Dibenzo[a,i]pyrène	ND	ND	ND	ND
Dibenzo[a,h]pyrène	ND	ND	ND	ND
Sous total (groupe 1)	2,75	5,02	0,68	1,34
HAP (groupe 2 et autres)	2,13	3,02	0,00	1,54
Acénaphtène	ND	ND	DNO	DNO
Acénaphthylène	ND 1,30	0,70	DNQ DNQ	DNQ
Anthracène	1,30 ND	0,70 ND	DNQ	DNQ DNO
Benzo(g,h,i)pérylène	0,72	1,10		0,32
Benzo(e)pyrène	0,72	0,96	0,29 0,33	0,38
Fluoranthène ¹	2,80	2,02	1,50	0,58
Fluorène	2,00	0,99	1,50	0,57
Naphtalène ¹	5,60	6,30	4,80	4,10
Pérylène	0,92	1,10	0,85	0,79
Phénanthrène ¹	5,70	2,87	7,10	1,08
Pyrène	3,00	2,50	2,70	1,45
1-Méthylnaphtalène ¹	2,20	1,82	1,80	1,27
2-Méthylnaphtalène ¹	2,90	2,08	2,30	1,20
1,3-Diméthylnaphtalène	2,90	1,15	1,90	0,91
2-Chloronaphtalène	ND	ND	ND	ND
1-Chloronaphtalène	ND	ND	DNQ	ND
2,3,5-Triméthylnaphtalène	1,20	0,97	1,00	DNQ
Carbazole	0,85	1,10	0,41	0,61
2-Méthylfluoranthène	ND	ND	ND	ND
Benzo[c]phénanthrène	ND	ND	ND	DNQ
Benzo[c]acridine	ND	ND	ND	ND
Cyclopenta[c,d]pyrène	ND	ND	ND	ND
2-Méthylchrysène	0,11	0,12	DNQ	DNQ
3-Méthylchrysène	0,22	0,22	0,13	0,09
4+6-Méthylchrysène	DNQ	ND	DNQ	ND
1-Nitropyrène	ND	ND	ND	ND
7,12-Diméthylbenzo[a]anthracène	ND	ND	ND	ND
3-Méthylcholanthrène	ND	ND	ND	ND
Dibenzo[a,j]anthracène	ND	0,07	ND	0,04
Anthanthrène	ND	ND	ND	ND
Dibenzo[a,e]fluoranthène	ND	ND	ND	ND
Coronène	0,20	0,40	0,13	0,13
HAP totaux ²	14,13	13,90	7,22	5,56
	Récupéra	tion (%)		
Acénaphtène-D10	68	68	75	78
Anthracène-D10	78	75	79	82
Pyrène-D10	72	86	90	99
Chrysène-D12	82	79	84	87
Benzo(a)pyrène-D12	88	78	85	75
Dibenzo(a,h)anthracène-D12	91	82	92	102
Récupération moyenne	80	78	84	87

ND: non détecté DNQ: détecté non quantifié NDR: détecté, mais ne satisfait pas le rapport isotopique

Les teneurs de ces composés ne sont pas incluses dans la somme des HAP totaux.

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Annexe 6a Concentrations des dioxines et des furanes chlorés (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eaux usées prélevés aux stations d'épuration municipales

Dioxines et furanes chlorés - congénères	Martinville 1999-05-13	La Prairie 1999-06-10	CUQ 1999-07-05	Farnham 1999-07-09	Cookshire 1999-07-13
Dioxines chlorées		36 097	-		
2,3,7,8-T ₄ CDD	ND	ND	ND	ND	ND
1,2,3,7,8-P ₅ CDD	ND	ND	ND	ND	ND
1,2,3,4,7,8-H ₆ CDD	ND	ND	ND	ND	ND
1,2,3,6,7,8-H ₆ CDD	ND	ND	ND	ND	ND
1,2,3,7,8,9-H ₆ CDD	ND	ND	0,9	1,1	ND
1,2,3,4,6,7,8-H ₇ CDD	ND	ND	1.9	ND	2.1
O ₈ CDD	ND	166.4	19.2	16,1	13,5
Furanes chlorés					
2,3,7,8-T ₄ CDF	ND	ND	ND	ND	ND
2,3,7,6-1 ₄ CDF 1.2.3.7.8-P ₅ CDF	ND ND	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-P ₅ CDF	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8-H ₆ CDF 1,2,3,6,7,8-H ₆ CDF	ND ND	ND ND	ND ND	ND ND	ND ND
2,3,4,6,7,8-H ₆ CDF	ND ND	ND ND	ND ND	ND ND	ND ND
2,3,4,6,7,8-H ₆ CDF 1,2,3,7,8,9-H ₆ CDF	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-H ₇ CDF	ND ND	ND ND	ND ND	0,7	ND ND
1,2,3,4,6,7,8-H ₇ CDF 1,2,3,4,7,8,9-H ₇ CDF	ND ND	ND ND	ND ND	0,7 ND	ND ND
0 ₈ CDF	ND ND	19.2	1,3	ND ND	4,2
O ₈ CDF	ND			ND	4,2
	1	Groupes homolo	ogues		
Dioxines chlorées					
T ₄ CDD	ND	ND	ND	2,5	ND
P₅CDD	ND	ND	ND	ND	ND
H₀CDD	ND	ND	0,9	1,1	ND
H ₇ CDD	ND	14,6	3,2	ND	2,1
O ₈ CDD	ND	166,4	19,2	16,1	13,5
Total dioxines ¹	0,0	181	23,3	19,8	15,7
Furanes chlorés					
T₄CDF	ND	ND	ND	ND	ND
P ₅ CDF	ND	ND	ND	ND	ND
H ₆ CDF	ND	ND	ND	ND	ND
H ₇ CDF	ND	10,9	ND	0,7	ND
O ₈ CDF	ND	19,2	1,3	ND	4,2
Total furanes ¹	0,0	30,1	1,3	0,7	4,2
		Récupération (
13C-2,3,7,8-T ₄ CDD	88	88	86	100	88
13C-1,2,3,7,8-1 ₄ CDD	81	77	74	97	85
13C-1,2,3,7,8-P ₅ CDD	95	88	87	94	81
13C-1,2,3,4,6,7,8-H ₇ CDD	87	88	100	144	96
13C- O ₈ CDD	94	91	89	121	94
13C-2,3,7,8-T ₄ CDF	99	84	86	105	90
13C-1,2,3,7,8-P ₅ CDF	76	74	68	74	78
13C-1,2,3,6,7,8-H ₆ CDF	102	94	73	90	85
13C-1,2,3,4,6,7,8-H ₇ CDF	95	89	95	118	84
Récupération moyenne	91	86	84	105	87
ND : non détecté DNO : déte					, ,

Concentrations des dioxines et des furanes chlorés selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales

Dioxines et furanes	Mart i 1999-	inville 05-31		rairie -06-16	CU 1999-	
chlorés - congénères	Goulden	ECSOTE	Goulden	ECSOTE ³	Goulden	ECSOTE
	pg	g/l	p	g/l	pg	
Dioxines chlorées			I	36 096		36 579
2,3,7,8-T ₄ CDD	ND	ND	ND		ND	ND
1,2,3,7,8-P ₅ CDD	ND	ND	ND		ND	0,11
1,2,3,4,7,8-H ₆ CDD	ND	ND	ND		ND	ND
1,2,3,6,7,8-H ₆ CDD	ND	ND	ND		NDR	0,16
1,2,3,7,8,9-H ₆ CDD	ND	ND	ND		ND	0,09
1,2,3,4,6,7,8-H ₇ CDD	1,26	0,21	0,88		3,70	2,89
O ₈ CDD	19,80	1,10	7,50		28,66	23,92
Équivalents toxiques ¹ dioxines	0,033	0,003	0,016		0,066	0,133
Furanes chlorés						
2,3,7,8-T ₄ CDF	ND	0,09	ND		DNQ	ND
1,2,3,7,8-P ₅ CDF	ND	ND	ND		ND	ND
2,3,4,7,8-P ₅ CDF	ND	ND	ND		ND	ND
1,2,3,4,7,8-H ₆ CDF	ND	0,08	ND		DNQ	ND
1,2,3,6,7,8-H ₆ CDF	ND	ND	ND		ND	ND
2,3,4,6,7,8-H ₆ CDF	ND	ND	ND		DNQ	ND
1,2,3,7,8,9-H ₆ CDF	ND	ND	ND		ND	ND
1,2,3,4,6,7,8-H ₇ CDF	NDR	0,72	ND		NDR	ND
1,2,3,4,7,8,9-H ₇ CDF	ND	0,17	ND		ND	ND
O ₈ CDF	NDR	1,60	0,40		2,63	1,93
Équivalents toxiques furanes	0,000	0,028	0,000		0,003	0,002
Équivalents toxiques totaux	0,033	0,031	0,016		0,069	0,135
Dioxines chlorées						
T_4CDD	0,90	0,89	ND		2,00	2,90
P ₅ CDD	ND	ND	ND		0,26	0,11
H ₆ CDD	0,07	ND	ND		0,59	1,05
H ₇ CDD	2,66	0,40	0,88		6,75	5,42
O_8CDD	19,80	1,10	7,50		28,66	
Total dioxines ²			7,00		20,00	23,92
	23,43	2,39	8,38		38,26	23,92 33,41
Furanes chlorés	23,43	2,39				
	23,43 ND	0.09				
Furanes chlorés	,	7-1	8,38		38,26	33,41
Furanes chlorés T ₄ CDF	ND	0,09	8,38 ND		38,26 ND	0,32
Furanes chlorés T₄CDF P₅CDF	ND ND	0,09 ND	ND ND		38,26 ND 0,31	0,32 0,47
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF	ND ND ND	0,09 ND 0,21	ND ND ND		ND 0,31 0,50	0,32 0,47 0,68
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF	ND ND ND ND	0,09 ND 0,21 1,10	ND ND ND ND ND		ND 0,31 0,50 ND	0,32 0,47 0,68 2,90
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF O ₈ CDF	ND ND ND ND	0,09 ND 0,21 1,10 1,60	ND ND ND ND ND 0,40		ND 0,31 0,50 ND 2,63	33,41 0,32 0,47 0,68 2,90 1,93
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF O ₈ CDF Total furanes ²	ND ND ND ND	0,09 ND 0,21 1,10 1,60 3,00	ND ND ND ND ND 0,40	75	38,26 ND 0,31 0,50 ND 2,63 3,44	0,32 0,47 0,68 2,90 1,93 3,40
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF O ₈ CDF	ND ND ND ND ND ND	0,09 ND 0,21 1,10 1,60	ND ND ND ND 0,40 0,40	75 67	ND 0,31 0,50 ND 2,63	33,41 0,32 0,47 0,68 2,90 1,93 3,40
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF Total furanes ² 13C-2,3,7,8-T ₄ CDD 13C-1,2,3,7,8-P ₅ CDD	ND ND ND ND ND 0,00	0,09 ND 0,21 1,10 1,60 3,00	8,38 ND ND ND ND 0,40 0,40 76 ^p ; 79 ^d 78 ^p ; 82 ^d		38,26 ND 0,31 0,50 ND 2,63 3,44 107 ^p ; 92 ^d 89 ^p ; 88 ^d	0,32 0,47 0,68 2,90 1,93 3,40
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF O ₈ CDF Total furanes ²	ND ND ND ND ND 0,00 97°; 100 ^d 104°; 94 ^d 94°; 100 ^d	0,09 ND 0,21 1,10 1,60 3,00	ND ND ND ND 0,40 0,40	67	ND 0,31 0,50 ND 2,63 3,44	33,41 0,32 0,47 0,68 2,90 1,93 3,40
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF Total furanes ² 13C-2,3,7,8-T ₄ CDD 13C-1,2,3,7,8-P ₅ CDD 13C-1,2,3,6,7,8-H ₆ CDD	ND ND ND ND ND 0,00	0,09 ND 0,21 1,10 1,60 3,00 75 68 78	8,38 ND ND ND ND 0,40 0,40 76 ^p ; 79 ^d 78 ^p ; 82 ^d 80 ^p ; 79 ^d	67 72	38,26 ND 0,31 0,50 ND 2,63 3,44 107 ^p ; 92 ^d 89 ^p ; 88 ^d 105 ^p ; 92 ^d	33,41 0,32 0,47 0,68 2,90 1,93 3,40 73 75 75 90
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF Total furanes ² 13C-2,3,7,8-T ₄ CDD 13C-1,2,3,7,8-P ₅ CDD 13C-1,2,3,6,7,8-H ₆ CDD 13C-1,2,3,4,6,7,8-H ₇ CDD	ND ND ND ND ND 0,00 97°; 100 ^d 104°; 94 ^d 94°; 100 ^d 96°; 98 ^d	0,09 ND 0,21 1,10 1,60 3,00 75 68 78 84	8,38 ND ND ND ND 0,40 0,40 76 ^p ; 79 ^d 78 ^p ; 82 ^d 80 ^p ; 79 ^d 82 ^p ; 80 ^d	67 72 69	38,26 ND 0,31 0,50 ND 2,63 3,44 107 ^p ; 92 ^d 89 ^p ; 88 ^d 105 ^p ; 92 ^d 82 ^p ; 92 ^d	33,41 0,32 0,47 0,68 2,90 1,93 3,40 73 75 75
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF O ₈ CDF Total furanes ² 13C-2,3,7,8-T ₄ CDD 13C-1,2,3,7,8-P ₅ CDD 13C-1,2,3,6,7,8-H ₆ CDD 13C-1,2,3,4,6,7,8-H ₇ CDD 13C-0 ₈ CDD	ND ND ND ND ND 0,00 97°; 100 ^d 104°; 94 ^d 94°; 100 ^d 96°; 98 ^d 87°; 86 ^d	75 68 78 84 82	8,38 ND ND ND ND 0,40 0,40 76 ^p ; 79 ^d 78 ^p ; 82 ^d 80 ^p ; 79 ^d 82 ^p ; 80 ^d 82 ^p ; 72 ^d	67 72 69 71	38,26 ND 0,31 0,50 ND 2,63 3,44 107 ^p ; 92 ^d 89 ^p ; 88 ^d 105 ^p ; 92 ^d 82 ^p ; 92 ^d 78 ^p ; 88 ^d	33,41 0,32 0,47 0,68 2,90 1,93 3,40 73 75 75 90 78
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF O ₈ CDF Total furanes ² 13C-2,3,7,8-T ₄ CDD 13C-1,2,3,7,8-P ₅ CDD 13C-1,2,3,4,6,7,8-H ₆ CDD 13C-1,2,3,4,6,7,8-H ₇ CDD 13C-0 ₈ CDD 13C-2,3,7,8-T ₄ CDF	ND ND ND ND ND 0,00 97°; 100 ^d 104°; 94 ^d 94°; 100 ^d 96°; 98 ^d 87°; 86 ^d 106°; 94 ^d	75 68 78 84 82 100	8,38 ND ND ND ND 0,40 0,40 76 ^p ; 79 ^d 78 ^p ; 82 ^d 80 ^p ; 79 ^d 82 ^p ; 80 ^d 82 ^p ; 72 ^d 86 ^p ; 80 ^d	67 72 69 71 90	38,26 ND 0,31 0,50 ND 2,63 3,44 107 ^p ; 92 ^d 89 ^p ; 88 ^d 105 ^p ; 92 ^d 82 ^p ; 92 ^d 78 ^p ; 88 ^d 88 ^p ; 88 ^d 88 ^p ; 84 ^d	73 75 75 90 78 73
Furanes chlorés T ₄ CDF P ₅ CDF H ₆ CDF H ₇ CDF O ₈ CDF Total furanes ² 13C-2,3,7,8-T ₄ CDD 13C-1,2,3,7,8-P ₅ CDD 13C-1,2,3,4,6,7,8-H ₆ CDD 13C-1,2,3,4,6,7,8-H ₇ CDD 13C-0 ₈ CDD 13C-2,3,7,8-T ₄ CDF 13C-1,2,3,7,8-P ₅ CDF	ND ND ND ND ND ND O,00 97°; 100 ^d 104°; 94 ^d 94°; 100 ^d 96°; 98 ^d 87°; 86 ^d 106°; 94 ^d 84°; 80 ^d	75 68 78 84 82 100 63	8,38 ND ND ND ND 0,40 0,40 76 ^p ; 79 ^d 78 ^p ; 82 ^d 80 ^p ; 79 ^d 82 ^p ; 80 ^d 82 ^p ; 72 ^d 86 ^p ; 80 ^d 70 ^p ; 73 ^d	67 72 69 71 90	38,26 ND 0,31 0,50 ND 2,63 3,44 107 ^p ; 92 ^d 89 ^p ; 88 ^d 105 ^p ; 92 ^d 78 ^p ; 88 ^d 88 ^p ; 88 ^d 88 ^p ; 86 ^d 88 ^p ; 87 ^d 88 ^p ; 88 ^d	73 75 75 90 78 73 75 75 75 76 90 78 73 63

ND : non détecté DNQ : détecté non quantifié NDR : détecté, mais ne satisfait pas le rapport isotopique p: particulaire d: dissous Concentration exprimée en équivalents toxiques de la 2,3,7,8-T₄CDD.

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Données non rapportées; le blanc (10 juin 1999) précédant l'échantillon de La Prairie montre une contamination inhabituelle en dioxines et en furanes.

Concentrations des dioxines et des furanes chlorés selon les méthodes Goulden et ECSOTE dans les échantillons d'eaux usées prélevés aux stations d'épuration municipales (suite)

Dioxines et furanes		nham -07-12	Cook 1999-	shire 07-13		
chlorés – congénères	Goulden	ECSOTE	Goulden	ECSOTE		
	p	g/l	pg	g/l		
Dioxines chlorées		36 584		36 581		
2,3,7,8-T ₄ CDD	ND	ND	ND	ND		
1,2,3,7,8-P ₅ CDD	ND	ND	0,33	1,30		
1,2,3,4,7,8-H ₆ CDD	ND	ND	0,40	0,85		
1,2,3,6,7,8-H ₆ CDD	NDR	0,23	1,55	2,30		
1,2,3,7,8,9-H ₆ CDD	DNQ	ND	1,26	2,00		
1,2,3,4,6,7,8-H ₇ CDD	3,30	5,10	15,50	23,88		
O ₈ CDD	29,26	37,10	65,20	84,24		
Équivalents toxiques¹ dioxines	0,062	0,111	0,706	1,488		
Furanes chlorés						
2,3,7,8-T ₄ CDF	DNQ	ND	7,40	24,00		
1,2,3,7,8-P ₅ CDF	ND	ND	ND	ND		
2,3,4,7,8-P ₅ CDF	ND	ND	1,06	3,90		
1,2,3,4,7,8-H ₆ CDF	ND	ND	DNQ	2,90		
1,2,3,6,7,8-H ₆ CDF	ND	ND	ND	1,90		
2,3,4,6,7,8-H ₆ CDF	ND	0,10	3,30	14,00		
1,2,3,7,8,9-H ₆ CDF	ND	ND	ND	ND		
1,2,3,4,6,7,8-H ₇ CDF	0,63	0,96	2,77	5,10		
1,2,3,4,7,8,9-H ₇ CDF	ND	ND	DNQ	1,60		
O ₈ CDF	1,30	2,10	3,34	3,87		
Équivalents toxiques furanes	0,008	0,022	1,631	6,301		
Équivalents toxiques totaux	0,070	0,133	2,337	7,789		
	Groupes h	omologues				
Dioxines chlorées						
T ₄ CDD	0,34	0,18	6,16	24,00		
P ₅ CDD	ND	ND	2,60	49,00		
H ₆ CDD	0,72	1,24	16,93	24,00		
H ₇ CDD	6,20	9,30	26,50	40,88		
O ₈ CDD	29,26	37,10	65,20	84,24		
Total dioxines ²	36,52	47,82	117,39	222,12		
Furanes chlorés						
T ₄ CDF	ND	ND	94,60	590,00		
P ₅ CDF	2,70	4,70	382,00	1200,00		
H ₆ CDF	0,13	0,54	23,60	70,00		
H ₇ CDF	1,40	2,16	3,14	12,00		
O ₈ CDF	1,30	2,10	3,34	3,87		
Total furanes ²	5,53	9,50	506,68	1875,87		
	Récupér	ation (%)				
13C-2,3,7,8-T ₄ CDD	91 ^p ; 100 ^d	69	89 ^p ; 84 ^d	76		
13C-1,2,3,7,8-P ₅ CDD	103 ^p ; 84 ^d	58	99 ^p ; 102 ^d	74		
13C-1,2,3,6,7,8-H ₆ CDD	104 ^p ; 92 ^d	66	104 ^p ; 98 ^d	72		
13C-1,2,3,4,6,7,8-H ₇ CDD	103 ^p ; 88 ^d	59	100 ^p ; 96 ^d	85		
13C- O ₈ CDD	90°; 78 ^d	55	99 ^p ; 88 ^d	70		
13C-2,3,7,8-T ₄ CDF	91 ^p ; 92 ^d	61	92 ^p ; 92 ^d	73		
13C-1,2,3,7,8-P ₅ CDF	88 ^p ; 72 ^d	47	93 ^p ; 88 ^d	70		
13C-1,2,3,6,7,8-H ₆ CDF	103 ^p ; 90 ^d	59	95 ^p ; 92 ^d	69		
13C-1,2,3,4,6,7,8-H ₇ CDF	98 ^p ; 90 ^d	61	90°; 82 ^d	80		
Récupération moyenne ND : non détecté DNO : détecté	97 ^p ;87 ^d	59	96 ^p ;91 ^d	74		

ND: non détecté DNQ: détecté non quantifié
NDR: détecté, mais ne satisfait pas le rapport isotopique p: particulaire d: dissous

Concentration exprimée en équivalents toxiques de la 2,3,7,8-T₄CDD.

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Annexe 7a Concentrations des dioxines et des furanes chlorés (pg total) dans les blancs ECSOTE relatifs aux échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001

Dioxines et furanes					
chlorés - congénères	1999-05-13	1999-06-17	1999-06-25	2000-12-01	2001-01-16
Dioxines chlorées					
2,3,7,8-T ₄ CDD	ND	ND	ND	ND	ND
1,2,3,7,8-P ₅ CDD	ND	ND	ND	ND	ND
1,2,3,4,7,8-H ₆ CDD	ND	ND	ND	ND	ND
1,2,3,6,7,8-H ₆ CDD	ND	ND	ND	ND	ND
1,2,3,7,8,9-H ₆ CDD	ND	1,2	ND	NDR	DNQ
1,2,3,4,6,7,8-H ₇ CDD	1,2	15,1	ND	NDR	DNQ
O ₈ CDD	ND	119,6	1,9	1,8	1,4
Furanes chlorés					
2,3,7,8-T ₄ CDF	ND	ND	ND	ND	ND
1,2,3,7,8-P ₅ CDF	ND	ND	ND	ND	ND
2,3,4,7,8-P₅CDF	ND	ND	ND	ND	ND
1,2,3,4,7,8-H ₆ CDF	ND	ND	ND	ND	ND
1,2,3,6,7,8-H₀CDF	ND	ND	ND	ND	ND
2,3,4,6,7,8-H ₆ CDF	ND	ND	ND	ND	ND
1,2,3,7,8,9-H ₆ CDF	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-H ₇ CDF	ND	1,8	ND	DNQ	ND
1,2,3,4,7,8,9-H ₇ CDF	ND	ND	ND	ND	ND
O ₈ CDF	1,4	13,0	ND	NDR	ND
		Groupes homolo	gues		
Dioxines chlorées					
T ₄ CDD	ND	3,1	ND	ND	ND
P ₅ CDD	ND	ND	ND	ND	ND
H ₆ CDD	ND	1,2	ND	ND	ND
H ₇ CDD	1,2	23,4	ND	ND	ND
O_8CDD	ND	119,6	1,9	1,8	1,4
Total dioxines ¹	1,2	147,3	1,9	1,8	1,4
Furanes chlorés		-			
T ₄ CDF	ND	ND	ND	ND	ND
P₅CDF	ND	ND	ND	ND	ND
H ₆ CDF	ND	ND	ND	ND	ND
H ₇ CDF	ND	7,3	ND	ND	ND
O ₈ CDF	1,4	13,0	ND	ND	ND
Total furanes ¹	1,4	20,3	0,0	0,0	0,0
		Récupération (%)		
13C-2,3,7,8-T ₄ CDD	89	77	108	58	84
13C-1,2,3,7,8-P ₅ CDD	81	68	99	77	90
13C-1,2,3,6,7,8-H ₆ CDD	92	74	109	83	103
13C-1,2,3,4,6,7,8-H ₇ CDD	95	78	95	69	88
13C-O ₈ CDD	95	69	102	53	70
13C-2,3,7,8-T ₄ CDF	111	84	111	65	86
13C-1,2,3,7,8-P ₅ CDF	65	65	95	61	81
13C-1,2,3,6,7,8-H ₆ CDF	90	80	104	72	97
13C-1,2,3,4,6,7,8-H ₇ CDF	96	81	112	79	92
Récupération moyenne	90	75	104	69	88

Annexe 7b Concentrations des dioxines et des furanes chlorés selon les méthodes Goulden et ECSOTE dans les échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001

	1999.	05-25	1999-(06-21	1999-	06-28
Dioxines et furanes	Goulden	ECSOTE	Goulden	ECSOTE ³	Goulden	ECSOTE
chlorés - congénères		g/l	pg		Pg	
Dioxines chlorées						
2,3,7,8-T ₄ CDD	ND	ND	ND		ND	ND
1,2,3,7,8-P ₅ CDD	0,09	ND	ND		ND	ND
1,2,3,4,7,8-H ₆ CDD	ND	ND	ND		ND	0,07
1,2,3,6,7,8-H ₆ CDD	0,17	0,12	ND		ND	0,12
1,2,3,7,8,9-H ₆ CDD	0,20	0,17	ND		0,13	0,17
1,2,3,4,6,7,8-H ₇ CDD	2,70	2,03	1,13		1,60	1,90
O ₈ CDD	17,00	12,00	6,47		10,10	12,89
Équivalents toxiques ¹ dioxines	0,126	0,061	0,018		0,039	0,068
Furanes chlorés						
2,3,7,8-T ₄ CDF	0,18	0,15	ND		ND	ND
1,2,3,7,8-P ₅ CDF	ND	ND	ND		ND	ND
2,3,4,7,8-P ₅ CDF	ND	ND	ND		ND	ND
1,2,3,4,7,8-H ₆ CDF	ND	0,07	ND		ND	ND
1,2,3,6,7,8-H ₆ CDF	ND	0,05	ND		ND	ND
2,3,4,6,7,8-H ₆ CDF	ND	0,07	ND		ND	ND
1,2,3,7,8,9-H ₆ CDF	ND	ND	ND		ND	ND
1,2,3,4,6,7,8-H ₇ CDF	0,73	0,61	0,25		ND	0,60
1,2,3,4,7,8,9-H ₇ CDF	ND	ND	ND		ND	ND
O ₈ CDF	1,80	1,62	0,91		1,26	1,80
Équivalents toxiques furanes	0,027	0,042	0,003		0,001	0,008
Équivalents toxiques totaux	0,153	0,103	0,021		0,040	0,076
		Groupes ho	mologues			
Dioxines chlorées						
T ₄ CDD	0,16	0,15	ND		0,33	ND
P ₅ CDD	0,09	ND	ND		ND	ND
H ₆ CDD	0,37	0,68	ND		0,38	0,72
H ₇ CDD	4,70	3,63	1,82		2,84	3,30
O_8CDD	17,00	12,00	6,47		10,10	12,89
Total dioxines	22,32	16,46	8,29		13,65	16,91
Furanes chlorés ²						
T ₄ CDF	0,27	0,15	ND		ND	ND
P ₅ CDF	ND	0,26	ND		ND	ND
H ₆ CDF	0,76	0,85	ND		0,34	0,34
H ₇ CDF	1,80	1,50	0,60		ND	1,30
O ₈ CDF	1,80	1,62	0,91		1,26	1,80
Total furanes ²	4,63	4,38	1,51		1,60	3,44
13C-2,3,7,8-T ₄ CDD	75	75	65 ^p ; 64 ^d	75	70°; 62 ^d	82
13C-1,2,3,7,8-P ₅ CDD	73	67	66 ^p ; 64 ^d	70	62 ^p ; 48 ^d	78
13C-1,2,3,6,7,8-H ₆ CDD	79	77	73 ^p ; 70 ^d	80	73 ^p ; 56 ^d	92
13C-1,2,3,4,6,7,8-H ₇ CDD	79	81	75 ^p ; 66 ^d	80	77 ^p ; 58 ^d	64
13C-O ₈ CDD	76	78	66 ^p ; 70 ^d	66	65 ^p ; 42 ^d	66
13C-2,3,7,8-T ₄ CDF	88	99	70°; 64 ^d	83	78 ^p ; 68 ^d	83
13C-1,2,3,7,8-P ₅ CDF	67	56	62 ^p ; 62 ^d	68	57 ^p ; 42 ^d	115
13C-1,2,3,6,7,8-H ₆ CDF	83	71	77 ^p ; 68 ^d	80	73 ^p ; 54 ^d	67
13C-1,2,3,4,6,7,8-H ₇ CDF	87	78	74 ^p ; 66 ^d	81	77 ^p ; 50 ^d	74
Récupération moyenne	79	76	68	76	62	80
ND : non détecté DNQ : détecte p : particulaire d : dissous	cté non quantifi	ié NDR : déte	ecté, mais ne sat	usfait pas le rap	pport isotopiqu	e
concentration exprimée en éc						

Concentration exprimée en équivalents toxiques de la 2,3,7,8-T₄CDD.

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Données non rapportées; le blanc (17 juin 1999) précédant l'échantillon du 21 juin 1999 montre une contamination inhabituelle en dioxines et en furanes.

Concentrations des dioxines et des furanes chlorés selon les méthodes Goulden et ECSOTE dans les échantillons d'eau de surface prélevés dans la rivière Yamaska à Saint-Hyacinthe de 1999 à 2001 (suite)

D: :	2000-13	2-04	2001-0	1-22
Dioxines et furanes chlorés - congénères	Goulden	ECSOTE	Goulden	ECSOTE
chiores - congeneres	pg/l	1	pg/	
Dioxines chlorées				
2,3,7,8-T ₄ CDD	ND	ND	ND	ND
1,2,3,7,8-P ₅ CDD	ND	ND	ND	ND
1,2,3,4,7,8-H ₆ CDD	ND	ND	ND	ND
1,2,3,6,7,8-H ₆ CDD	NDR	NDR	ND	ND
1,2,3,7,8,9-H ₆ CDD	0,06	NDR	ND	ND
1,2,3,4,6,7,8-H ₇ CDD	1,10	1,00	0,63	0,64
O ₈ CDD	6,90	6,7	3,90	3,52
Équivalents toxiques ¹ dioxines	0,024	0,017	0,010	0,010
Furanes chlorés				
2,3,7,8-T ₄ CDF	ND	ND	ND	ND
1,2,3,7,8-P ₅ CDF	ND	ND	ND	ND
2,3,4,7,8-P ₅ CDF	ND	ND	ND	ND
1,2,3,4,7,8-H ₆ CDF	DNQ	NDR	ND	0,04
1,2,3,6,7,8-H ₆ CDF	ND	ND	ND	DNQ
2,3,4,6,7,8-H ₆ CDF	ND	ND	ND	ND
1,2,3,7,8,9-H ₆ CDF	ND	ND	ND	ND
1,2,3,4,6,7,8-H ₇ CDF	0,31	0,32	NDR	0,16
1,2,3,4,7,8,9-H ₇ CDF	ND	ND	ND	ND
O ₈ CDF	0,79	1,00	0,41	0,44
Équivalents toxiques furanes	0,004	0,004	0,000	0,006
Équivalents toxiques totaux	0,028	0,021	0,010	0,016
	Groupes ho	mologues	<u> </u>	,
Dioxines chlorées		- G		
T ₄ CDD	ND	ND	ND	ND
P ₅ CDD	ND	ND	ND	ND
H ₆ CDD	0,06	0,09	ND	0,08
H ₇ CDD	1,90	1,8	1,10	1,00
O ₈ CDD	6,90	6,7	3,90	3,52
Total dioxines ²	8,86	8,59	5,00	4,60
Furanes chlorés				,,,,,
T ₄ CDF	ND	ND	ND	ND
P ₅ CDF	ND	0,23	ND	ND
H ₆ CDF	0,12	0,05	ND	0,16
H ₇ CDF	0,69	0,74	ND	0,16
O ₈ CDF	0,79	1,00	0,41	0,44
Total furanes ²	1,60	2,02	0,41	0,76
	Récupérat			.,.
13C-2,3,7,8-T ₄ CDD	69	67	77	78
13C-1,2,3,7,8-P ₅ CDD	83	83	85	83
13C-1,2,3,6,7,8-H ₆ CDD	90	85	92	93
13C-1,2,3,4,6,7,8-H ₇ CDD	80	73	77	74
13C- O ₈ CDD	73	64	66	68
13C-2,3,7,8-T ₄ CDF	76	74	80	77
13C-1,2,3,7,8-P ₅ CDF	77	69	81	75
13C-1,2,3,6,7,8-H ₆ CDF	74	71	89	92
13C-1,2,3,4,6,7,8-H ₇ CDF	84	80	83	81
Récupération moyenne	78	74	81	80

ND: non détecté DNQ: détecté non quantifié NDR: détecté, mais ne satisfait pas le rapport isotopique

Concentration exprimée en équivalents toxiques de la 2,3,7,8-T₄CDD.

Les valeurs inférieures à la limite de détection ont été considérées comme étant nulles (zéro).

Annexe 8 Résultats d'analyses des BPC, des HAP, des dioxines et des furanes chlorés dans des échantillons d'eau de surface prélevés en duplicata dans des rivières du Québec

					BPC totau	ıx	Dioxine	es	Furanes		Dioxines et f totaux	uranes	Équivalents to 2,3,7,8-TC	•	HAP groupe	
Site	Date	Labo	Volume (litre)	Traitement	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	í Écart (%)	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	n Écart (%)
Donnacona/Rivière Jacques-Cartier Donnacona/Rivière Jacques-Cartier	2002-05-28 2002-05-28		58,35 56,35	Filtré in situ Filtré in situ	210 210	0	6,25 5,17	19	0,69 0,67	3	6,94 5,84	17	0,012 0,010	18	1 470 2 080	34
Donnacona/Rivière Jacques-Cartier Donnacona/Rivière Jacques-Cartier	2002-07-23 2002-07-23		57,27 53,55	Filtré <i>in situ</i> Filtré labo	210 180	15	17,89 15,15	17	2,62 2,34	11	20,51 17,49	16	0,061 0,050	20	4 820 4 140	15
Donnacona/Rivière Jacques-Cartier Donnacona/Rivière Jacques-Cartier	2002-09-17 2002-09-17		57,20 58,00	Filtré <i>in situ</i> Filtré labo	81 110	30	4,33 4,38	1	0,42 0,61	37	4,75 4,99	5	0,009 0,011	20	1 617 1 650	2
Donnacona/Rivière Jacques-Cartier Donnacona/Rivière Jacques-Cartier	2002-11-19 2002-11-19		56,85 53,55	Filtré <i>in situ</i> Filtré labo	150 120	22	6,34 6,09	4	0,75 0,74	1	7,09 6,83	4	0,012 0,013	8	4 330 4 773	10
Donnacona/Rivière Jacques-Cartier Donnacona/Rivière Jacques-Cartier	2003-04-22 2003-04-22		57,55 53,55	Filtré <i>in situ</i> Filtré labo	520 440	17	17 13,15	26	5,29 3,97	29	22,29 17,12	26	0,453 0,337	29	6 160 4 687	27
Donnacona/Rivière Jacques-Cartier Donnacona/Rivière Jacques-Cartier	2003-06-17 2003-06-17			Filtré in situ Filtré in situ	330 300	10	10,04 6,43	44	2,27 0,83	93	12,31 7,26	52	0,042 0,019	75	1 989 2 492	22
Donnacona/Rivière Jacques-Cartier Donnacona/Rivière Jacques-Cartier	2003-08-21 2003-08-21			Filtré <i>in situ</i> Filtré labo	230 270	16	5,1 3,49	37	0,45 0,42	7	5,55 3,91	35	0,009 0,011	20	1 308 1 290	1
Donnacona/Rivière Jacques-Cartier Donnacona/Rivière Jacques-Cartier	2003-10-21 2003-10-21			Filtré in situ Filtré in situ	250 240	4	2,79 2,4	15	0,18 0,13	32	2,97 2,53	16	0,006 0,005	18	1 040 1 040	0
Charny/Rivière Chaudière Charny/Rivière Chaudière	2001-07-23 2001-07-23		55,75 53,55	Filtré <i>in situ</i> Filtré labo	240 480	67	8,53 10,41	20	1,51 1,79	17	10,04 12,20	19	0,035 0,037	6	1 760 2 060	16
Charny/Rivière Chaudière Charny/Rivière Chaudière	2001-09-17 2001-09-17		,	Filtré <i>in situ</i> Filtré labo	240 220	9	2,22 3,53	46	0,22 0	200	2,44 3,53	37	0,009 0,008	12	474 560	17
Charny/Rivière Chaudière Charny/Rivière Chaudière	2001-11-26 2001-11-26		57,20 53,55	Filtré <i>in situ</i> Filtré labo	130 290	76	4,12 3,91	5	1,07 0,39	93	5,19 4,30	19	0,015 0,007	73	1 140 1 230	8
Charny/Rivière Chaudière Charny/Rivière Chaudière	2002-05-30 2002-05-30		55,18 53,55	Filtré <i>in situ</i> Filtré labo	220 260	17	4,64 4,42	5	0,72 0,68	6	5,36 5,10	5	0,011 0,010	10	930 1 212	26
Drummondville/Rivière Saint-François Drummondville/Rivière Saint-François	2002-07-25 2002-07-25		57,59 53,55	Filtré <i>in situ</i> Filtré labo	300 390	26	5,95 5,25	13	1 0,94	6	6,95 6,19	12	0,021 0,012	55	2 400 2 152	11
Drummondville/Rivière Saint-François Drummondville/Rivière Saint-François	2002-09-19 2002-09-19		,	Filtré <i>in situ</i> Filtré labo	490 460	6	14,66 13,65	7	3,3 2,82	16	17,96 16,47	9	0,062 0,034	58	6 930 6 902	0
Drummondville/Rivière Saint-François Drummondville/Rivière Saint-François	2002-11-21 2002-11-21		,	Filtré <i>in situ</i> Filtré labo	190 190	0	5,04 5,11	1	0,81 0,78	4	5,85 5,89	1	0,019 0,015	24	2 171 2 162	0

Annexe 8 Résultats d'analyses des BPC, des HAP, des dioxines et des furanes chlorés dans des échantillons d'eau de surface prélevés en duplicata dans des rivières du Québec (suite)

					BPC total	ıx	Dioxine	s	Furanes		Dioxines et f	uranes	Équivalents to 2,3,7,8-TC	•	HAP groupe	1
Site	Date	Labo	Volume (litre)	Traitement	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	n Écart (%)						
Drummondville/Rivière Saint-François Drummondville/Rivière Saint-François	2004-05-04 2004-05-04		59,79 53,55	Filtré <i>in situ</i> Filtré labo	380 490	25	12,49 9,43	28	1,81 1,94	7	14,30 11,37	23	0,042 0,053	23	6 370 6 150	4
Montmagny/Rivière de la Perdrix Montmagny/Rivière de la Perdrix	2000-10-23 2000-10-23		53,55 53,55	Filtré labo Filtré labo	250 240	4	0,48 0,68	34	0,06 0,08	29	0,54 0,76	34	0,001 0,002	67	686 953	33
Montmagny/Rivière de la Perdrix Montmagny/Rivière de la Perdrix	2001-03-26 2001-03-26		53,55 53,55	Filtré labo Filtré labo	260 210	21	0,36 0,44	20	0,1 0,04	86	0,46 0,48	4	0,001 0,005	133	548 439	22
Montmagny/Rivière de la Perdrix Montmagny/Rivière de la Perdrix	2001-06-11 2001-06-11		57,10 53,55	Filtré <i>in situ</i> Filtré labo	140 200	35	0,44 0,69	44	0,05 0,26	135	0,49 0,95	64	0,001 0,002	67	541 531	2
Montmagny/Rivière de la Perdrix Montmagny/Rivière de la Perdrix	2001-07-30 2001-07-30		56,30 53,55	Filtré <i>in situ</i> Filtré labo	76 170	76	0,66 3,03	128	0,21 0,47	76	0,87 3,50	120	0,003 0,039	171	477 517	8
Montmagny/Rivière de la Perdrix Montmagny/Rivière de la Perdrix	2001-09-19 2001-09-19		56,85 53,55	Filtré <i>in situ</i> Filtré labo	53 88	50	0,3 0,48	46	0,13 0,19	38	0,43 0,67	44	0,002 0,003	40	268 292	9
Montmagny/Rivière de la Perdrix Montmagny/Rivière de la Perdrix	2001-11-28 2001-11-28		56,35 53,55	Filtré <i>in situ</i> Filtré labo	54 110	68	0,63 0,46	31	0,09 0,03	100	0,72 0,49	38	0,001 0,001	0	329 455	32
Montréal/Fleuve Saint-Laurent Montréal/Fleuve Saint-Laurent	2002-12-03 2002-12-03			Filtré in situ Filtré in situ	430 400	7	2,11 2,11	0	0,72 0,6	18	2,83 2,71	4	0,014 0,014	0	1 581 1 720	8
Montréal/Fleuve Saint-Laurent Montréal/Fleuve Saint-Laurent	2004-05-06 2004-05-06			Filtré <i>in situ</i> Filtré labo	390 410	5	1,77 1,11	46	0,18 0,15	18	1,95 1,26	43	0,003 0,003	0	1 015 1 134	11
Montréal/Fleuve Saint-Laurent Montréal/Fleuve Saint-Laurent	2004-09-01 2004-09-01		,-	Filtré <i>in situ</i> Filtré labo	410 710	54	0,54 0,63	15	0,08 0,08	0	0,62 0,71	14	0,001 0,001	0	472 445	6
Montréal/Fleuve Saint-Laurent Montréal/Fleuve Saint-Laurent	2005-01-18 2005-01-18		56,90 53,55	Filtré <i>in situ</i> Filtré labo	110 130	17	1,12 1,02	9	0,16 0,21	27	1,28 1,23	4	0,004 0,003	29	1 459 1 234	17
Nicolet/Rivière Nicolet Nicolet/Rivière Nicolet	2003-06-25 2003-06-25		57,15 56,15	Filtré in situ Filtré in situ	410 180	78	5,01 3,29	41	1,46 0,34	124	6,47 3,63	56	0,016 0,011	37	2 490 1 567	46
Nicolet/Rivière Nicolet Nicolet/Rivière Nicolet	2003-08-25 2003-08-25		,	Filtré <i>in situ</i> Filtré labo	120 140	15	1,89 1,9	1	0,24 0,22	9	2,13 2,12	0	0,005 0,005	0	562 446	23
Nicolet/Rivière Nicolet Nicolet/Rivière Nicolet	2003-10-27 2003-10-27		,	Filtré in situ Filtré in situ	84 140	50	4,22 4,5	6	0,76 0,75	1	4,98 5,25	5	0,015 0,011	31	2 230 2 310	4

Annexe 8 Résultats d'analyses des BPC, des HAP, des dioxines et des furanes chlorés dans des échantillons d'eau de surface prélevés en duplicata dans des rivières du Québec (suite)

					BPC totau	X	Dioxin	es	Furanes		Dioxines et f totaux		Équivalents to 2,3,7,8-TC	•	HAP groupe	1
Site	Date	Labo	Volume (litre)	Traitement	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	n Écart (%)	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	Écart (%)	Concentration (pg/l)	n Écart (%)
Nicolet/Rivière Nicolet Nicolet/Rivière Nicolet	2004-05-10 2004-05-10		57,27 53,55	Filtré <i>in situ</i> Filtré labo	110 150	31	1,54 1,7	10	0,11 0,15	31	1,65 1,85	11	0,003 0,004	29	330 370	11
Québec/Rivière Saint-Charles Québec/Rivière Saint-Charles	2000-10-25 2000-10-25		53,55 53,55	Filtré labo Filtré labo	350 290	19	6,14 5,42	12	1,08 0,74	37	7,22 6,16	16	0,020 0,018	11	2 324 2 520	8
Québec/Rivière Saint-Charles Québec/Rivière Saint-Charles	2001-03-12 2001-03-12		53,55 53,55	Filtré labo Filtré labo	260 240	8	6,23 6,6	6	1,1 0,9	20	7,33 7,50	2	0,022 0,016	32	4 790 4 940	3
Québec/Rivière Saint-Charles Québec/Rivière Saint-Charles Québec/Rivière Saint-Charles	2001-06-04 2001-06-04 2001-06-04	8095	57,00 54,53 53,50	Filtré <i>in situ</i> Filtré <i>in situ</i> Filtré labo	290 340 450	16 35	17,9 18,27 16,84	2 7	3,39 3,59 3	6 15	21,29 21,86 19,84	3 8	0,085 0,088 0,081	3 7	5 630 4 890 4 110	14 17
Trois-Rivières/Saint-Maurice Trois-Rivières/Saint-Maurice	2003-04-24 2003-04-24		56,55 57,65	Filtré in situ Filtré in situ	350 280	22	4,7 4,02	16	2,22 2,29	3	6,92 6,31	9	0,061 0,144	81	11 120 8 940	22
Trois-Rivières/Saint-Maurice Trois-Rivières/Saint-Maurice	2003-06-19 2003-06-19		57,04 53,55	Filtré <i>in situ</i> Filtré labo	280 400	35	1,33 1,67	23	0,54 0,27	67	1,87 1,94	4	0,015 0,009	50	3 750 3 376	10
Trois-Rivières/Saint-Maurice Trois-Rivières/Saint-Maurice	2003-08-19 2003-08-19		57,87 53,55	Filtré in situ Filtré in situ	230 140	49	0,83 0,93	11	0,21 0,19	10	1,04 1,12	7	0,008 0,003	91	1 982 1 950	2
Trois-Rivières/Saint-Maurice Trois-Rivières/Saint-Maurice	2003-10-23 2003-10-23		58,21 53,55	Filtré <i>in situ</i> Filtré labo	97 120	21	0,91 3,48	117	0,12 0,16	29	1,03 3,64	112	0,002 0,009	127	2 610 1 900	31
TOUTES LES DONNÉES																
MOYENNE MÉDIANE MINIMUM MAXIMUM 75° percentile Nombre de données						28 21 0 78 35 38		24 15 0 128 33 38		38 19 0 200 38 38		24 15 0 120 35 38		39 26 0 171 57 38		14 11 0 46 22 38
FILTRÉ in situ -in situ																
MOYENNE MÉDIANE MINIMUM MAXIMUM 75° percentile Nombre de données						26 16 0 78 49 9		17 15 0 44 19 9		32 10 1 124 32 9		19 9 3 56 17 9		39 31 0 91 75 9		17 14 0 46 22 9

Annexe 8 Résultats d'analyses des BPC, des HAP, des dioxines et des furanes chlorés dans des échantillons d'eau de surface prélevés en duplicata dans des rivières du Québec (suite)

Site	Date	Labo Volume (litre)	e Traitement	BPC totaux	Dioxines	Furanes	Dioxines et furanes totaux	Équivalents toxiques 2,3,7,8-TCDD	HAP groupe 1
				Concentration Écart	Concentration Écart	Concentration Écart	Concentration Écart	Concentration Écart	Concentration Écart
				(pg/l) (%)	(pg/l) (%)	(pg/l) (%)	(pg/l) (%)	(pg/l) (%)	(pg/l) (%)
FILTRÉ laboratoire-laboratoire									
MOYENNE				13	18	43	14	61	17
MÉDIANE				13	16	33	10	49	15
MINIMUM				4	6	20	2	11	3
MAXIMUM				21	34	86	34	133	33
75 ^e percentile				19	24	49	20	84	25
Nombre de données				4	4	4	4	4	4
FILTRÉ in situ -laboratoire									
MOYENNE				31	27	39	27	35	13
MÉDIANE				25	17	18	16	23	11
MINIMUM				0	1	0	0	0	0
MAXIMUM				76	128	200	120	171	32
75 ^e percentile				35	37	38	37	50	17
Nombre de données				25	25	25	25	25	25